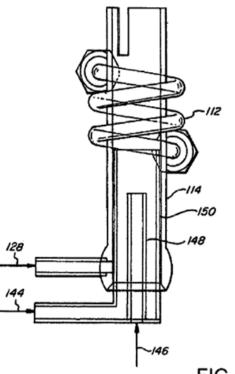

## **Avio 200 ICP-OES Flat Plate**



Riccardo MAGARINI, EMEA Sr. Specialist for Atomic Spectroscopy *For the Better* Budapest 2016, October 17<sup>th</sup>




# The beginnings (1960s'): Greenfield's and Fassel's plasmas

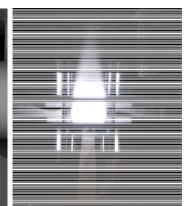


## The standard "helical" load coil

 Temperature of the plasma tends to follow the shape of the helix and creates non-uniform heating, allowing the bottom of the plasma to tip. This provides the possibility for sample to escape around the out in the state of the







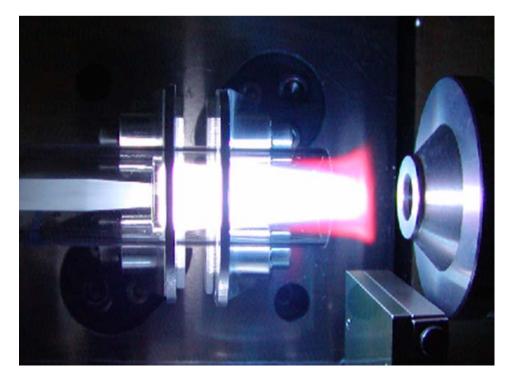

## **Avio 200: Flat Plate Technology**

- Generates perfectly symmetrical plasma
- Full Power range from 750-1500 W (in 1 W increments) in **both** Axial and Radial modes
- No coil, no bonnet, no cooling
  - Flat Plate technology achieves greater plasma robustness and stability because of its unique design, leading to less sample loss, greater analytical signal, lower argon consumption, and less maintenance





Patents 7106438 and 7511246

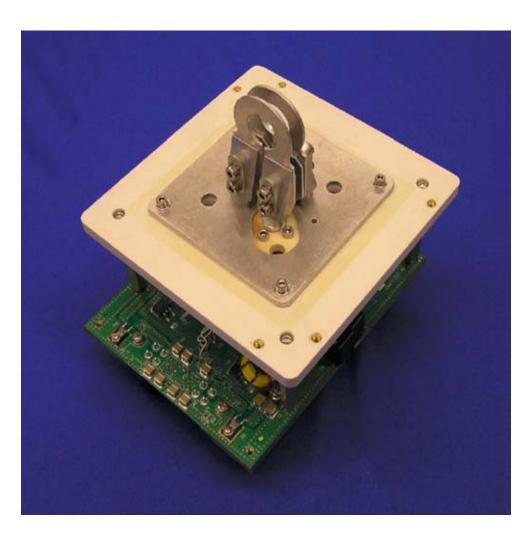

| I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | US007106438B2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12) United States Patent<br>Morrisroe et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (10) Patent No.: US 7,106,438 B2<br>(45) Date of Patent: Sep. 12, 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 54) ICP-OES AND ICP-MS INDUCTION<br>CURRENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4,529,940 A 12,1985 Chapte et al.<br>4,766,237 A 8,1988 Munistrae et al.<br>4,818,916 A 4,1989 Morristrae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <li>18 Investors: Peter J. Morrisroe, New Millord, CT<br/>(US); Thomas Myles, Fairfield, CT<br/>(US)</li>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.526,110 A 571996 Banymen<br>5.534,998 A 771996 Eastpate et al.<br>5.648,701 A 771997 Books et al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ol> <li>Assignce: PerkinElmer LAS, Inc., Besjon, MA<br/>(US)</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <ul> <li>Nosice: Subject to any disclosimer, the term of this<br/>potent is extended or adjusted under 35<br/>U.S.C. 154(8) by 243 days.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OTHER PUBLICATIONS<br>Red W. Boroell et al. "Hole-on-The Errly Yeas" Dat. 6, 1997, pp<br>1239-1245.<br>Econiet's for report, Australian, Apr. II, 2005.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <ol> <li>Appl. No.: 10/736,779</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | * cited by examiner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ol> <li>Filed: Dec. 9, 2003</li> <li>Frior Publication Data</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Primary Espininer-\$. L. Evans<br>(74) Attorney: Agent, or Firm-St. Onge Steward Johnston                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (5) Prior Publication Data<br>US 2004/0169855 A1 Sep. 2, 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ac Rooms LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Related U.S. Application Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (57) ABSTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Interest U.S. Application Data           (Provisional application No. 60: 432,963, Eled on Dec.           (2) 2002.           (1) Int. CL.           (2004.01)           (2004.01)           (2004.01)           (2004.01)           (2004.01)           (2004.01)           (2005.01)           (2005.01)           (2005.01)           (2005.01)           (2005.01)           (2005.01)           (2005.01)           (2005.01)           (2005.01)           (2005.01)           (2005.01)           (2005.01)           (2005.01)           (2005.01)           (2005.01)           (2005.01)           (2005.01)           (2005.01)           (2005.01)           (2005.02)           (2005.02)           (2005.02)           (2005.02)           (2005.02)           (2005.02)           (2005.02)           (2005.02)           (2005.02)           (2005.02)           (2005.02)           (2005.02)           (2005.02)           (2005.02) <td>In a method of spectroscopically analyzing a sample, i<br/>plasma is generated. A magnetic field is generated by i<br/>magnetic tickl. Sengle nones are introduced into the plasma<br/>hugnetic tickl. Sengle nones are introduced into the plasma<br/>spectroscopic and the sample are confined. The<br/>premi comparison or mass to charge mito of the cner<br/>premi comparison or mass to charge mito of the cner<br/>intractic dipole has an associated magnetic field and<br/>a sample or<br/>sample of magnetic field and a sample or<br/>solver spectra comparison.<br/><b>2<sup>2</sup> Charse, 8 Draving Sheets</b></td> | In a method of spectroscopically analyzing a sample, i<br>plasma is generated. A magnetic field is generated by i<br>magnetic tickl. Sengle nones are introduced into the plasma<br>hugnetic tickl. Sengle nones are introduced into the plasma<br>spectroscopic and the sample are confined. The<br>premi comparison or mass to charge mito of the cner<br>premi comparison or mass to charge mito of the cner<br>intractic dipole has an associated magnetic field and<br>a sample or<br>sample of magnetic field and a sample or<br>solver spectra comparison.<br><b>2<sup>2</sup> Charse, 8 Draving Sheets</b> |
| 128 114<br>128 144<br>128 144<br>128 144<br>150 154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/152<br>1/52b<br>1/6<br>1/54<br>-164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

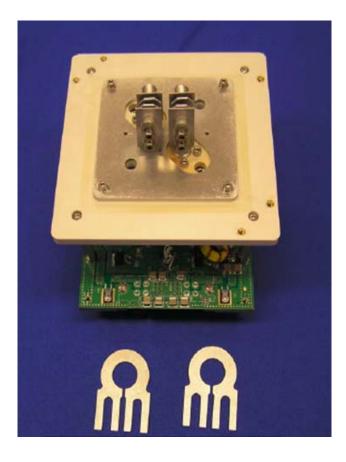
PerkinElme

4

## **New Induction Plates**

- The new induction plate plasma running at 1500 watts and 8 L/min of argon plasma flow.
- The new Induction plates do not require cooling
  - Even under prolonged maxpower operation, the new aluminum induction plates look like new with no sign of aging.





- For more information see:
  - Patent No. US 7106438 and 7511246

<u>http://free.patentfetcher.com/</u>



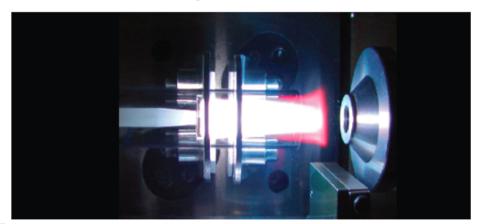
## **The Flat Plate RF Oscillator**







## **Avio 200: Flat Plate Technology**


Traditional Helical System (views shown with different camera exposures)





The figure on the left shows the angled base of the plasma which coincides with the angled shape of the load coil. The figure on the right shows the upward tilt of the axial channel and plasma tip as well as the differences in plasma density above and below the central channel.

#### Innovative Flat Plate System (views shown with different camera exposures)





The figure on the left shows the flatness of the plasma base. It is also broader than the rounded helical plasma base (shown above) which prevents sample escape around the edges. The figure on the right shows the symmetry of the plasma around the axial channel with no distortion in shape.

## **New Induction Plates**

 Plasma running kerosene at full RF power



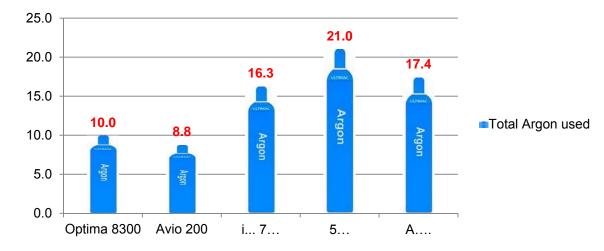


• 1500 W and 10 Lpm



## Avio 200: Cutting-edge Innovation

- Patented Flat Induction Plates operate at half the Argon flow of helical designs
  - Avio (and Optima) platforms are the only ICP-OES systems capable of running at 8 L/min plasma gas
  - Same robust plasma conditions for all samples
  - Full power range allows the analysis of all sample types
  - No helical load coil needed: eliminates maintenance, consumables cost, downtime and leakage risk








## **About ICP-OES Argon Gas Consumption (Lpm)**

|                                           | Plasma On / Running |             |      |      |      |  |  |  |
|-------------------------------------------|---------------------|-------------|------|------|------|--|--|--|
|                                           | PerkinElmer         | PerkinElmer | То   | At   | So   |  |  |  |
|                                           | Optima 8300 DV      | Avio 200 DV | i 7  | 5    | A    |  |  |  |
| Torch - Plasma Flow                       | 8.0                 | 8.0         | 12.0 | 12.0 | 13.0 |  |  |  |
| Torch - Aux Flow                          | 0.2                 | 0.2         | 0.5  | 1.0  | 0.7  |  |  |  |
| Torch - Neb Flow                          | 0.6                 | 0.6         | 0.7  | 0.7  | 0.7  |  |  |  |
| Optic - Detector Purge                    | 1.2                 | 0.0         | 0.1  | 0.0  | 0.0  |  |  |  |
| Optic - Cone, Snout, Trasfer Optics Purge | 0.0                 | 0.0         | 0.0  | 6.6  | 3.0  |  |  |  |
| Optic - Polychromator Purge               | 0.0                 | 0.0         | 3.0  | 0.7  | 0.0  |  |  |  |
| Total Argon used                          | 10.0                | 8.8         | 16.3 | 21.0 | 17.4 |  |  |  |





## Avio 200 New ICP-OES System – Applications

Riccardo MAGARINI Budapest 2016, October 17<sup>th</sup>





## **Avio 200 ICP-OES Application Notes**

- Environmental
  - Analysis of Micronutrients in Soil Using ICP-OES
- Food & Bev
  - Analysis of Micronutrients in Milk Using ICP-OES
  - Analysis of Micronutrients in Fruit Juices Using ICP-OES
- Industrial
  - Meeting the RoHS Directive with M/W Sample Preparation and ICP-OES
- and more to be released shortly.





## **Applications: Soil Analysis with the Avio 200 ICP-OES**





## Introduction

- Micronutrients in soil are the building blocks for the crops we eat and feed to livestock
- Proper plant nutrition promotes efficient growth and water usage
  - Maximize production amount and quality while minimizing environmental impact
- For consumers and industry, it is important to monitor the micronutrients in soil
  - Variation in soil quality region to region
  - Prevent or monitor soil depletion
  - Proper land custodianship with effective fertilizing and crop rotation
- Nutrients can be monitored with Flame AA, ICP-OES, or ICP-MS
  - ICP-OES provides a good balance between ease-of-use, cost, and speed of analysis



## **Samples**

- The soil samples selected represent residential and agricultural land plots as well as specialized garden soils
  - Residential Yard: a single sample of local soil
  - Agricultural Field: three samples representing:
    - Vineyard
    - Rotational crop field
    - Pasture

- Home Garden:
- n: three samples representing:
  - Amended yard soil
  - Consumer pre-packaged "garden soil"
  - Commercial "garden soil"



## **Sample Preparation**

- Samples are high in carbon (organic matter) and dissolved solids
  - Background interference on elements of interest
  - Plasma loading from carbon impacts element ionization
  - Reduction of nebulization efficiency
- Microwave-assisted digestion as a solution
  - Conversion of carbon to  $CO_2$ , removing carbon from the sample solution
  - Rapid heating and cooling for short digestion times
  - Higher temperatures than open-vessel digestion
  - Closed vessels prevent analytes losses



## **Sample Preparation: Microwave Assisted Digestion**

- Titan MPS<sup>™</sup> Microwave Sample Preparation System
  - 1 g of sample added to Titan 75 mL digestion vessels
  - Add pre-digestion spikes, as required
  - Add 6 mL HCl (37 %) + 3 mL HNO<sub>3</sub> (70 %)
  - Let sit for 10 minutes, then cap vessels and digest
  - Transfer to auto-sampler tubes and dilute to 50 mL with deionized water

Titan Digestion Program for Soil

| Step | Temp<br>(°C) | Pressure<br>Limit<br>(bar) | Ramp<br>Time<br>(min) | Hold<br>Time<br>(min) | Power<br>Limit<br>(%) |
|------|--------------|----------------------------|-----------------------|-----------------------|-----------------------|
| 1    | 150          | 35                         | 5                     | 5                     | 80                    |
| 2    | 195          | 35                         | 2                     | 20                    | 100                   |
| 3    | 50           | 35                         | 1                     | 15                    | 0                     |

- This method was designed for elements leaching
  - No total sample digestion
  - Remaining solids were centrifuged and the solution decanted for analysis

## Instrumental Conditions: Avio<sup>™</sup> 200 ICP-OES

Short

#### **Method Parameters**

| Short        |                            |             |                    |             |
|--------------|----------------------------|-------------|--------------------|-------------|
| Integration  | Integration<br>Range (sec) | Plasma View | Wavelength<br>(nm) | Element     |
| Times        | 0.1-2                      | Radial      | 308.215            | AI          |
|              | 0.1-5                      | Axial       | 233.527            | Ba          |
|              | 0.1-2                      | Radial      | 317.993            | Ca          |
|              | 0.1-5                      | Axial       | 228.616            | Со          |
|              | 0.1-5                      | Axial       | 327.393            | Cu          |
|              | 0.1-2                      | Radial      | 238.204            | Fe          |
|              | 0.1-2                      | Radial      | 766.490            | K           |
| Ins          | 0.1-2                      | Radial      | 285.213            | Mg          |
| Parameter    | 0.1-2                      | Radial      | 257.610            | Mn          |
| Farameter    | 0.1-2                      | Radial      | 589.592            | Na          |
| Nebulizer    | 0.1-5                      | Axial       | 231.604            | Ni          |
| Spray Cham   | 0.1-5                      | Axial       | 178.221            | Р           |
|              | 0.1-5                      | Axial       | 181.975            | S           |
| Sample Upta  | 0.1-5                      | Axial       | 292.464            | V           |
|              | 0.1-5                      | Axial       | 206.200            | Zn          |
| RF Power (V  | 0.1-5                      | Radial      | 371.029            | Y (int std) |
| Nebulizer Ga | 0.1-5                      | Axial       | 371.029            | Y (int std) |
| Auxiliary Ga | Low Argo                   |             |                    |             |
|              | Flows                      |             |                    |             |

#### **Instrumental Parameters**

| Parameter                   | Value                  |
|-----------------------------|------------------------|
| Nebulizer                   | Meinhard Glass Type K1 |
| Spray Chamber               | Baffled Glass Cyclonic |
| Sample Uptake Rate (mL/min) | 0.8                    |
| RF Power (W)                | 1500                   |
| Nebulizer Gas (L/min)       | 0.70                   |
| Auxiliary Gas (L/min)       | 0.2                    |
| Plasma Gas (L/min)          | 8                      |

## Instrumental Conditions: Avio<sup>™</sup> 200 ICP-OES

#### **Calibration Standards**

#### **Calibration Results**

| Element | Std 1<br>(mg/L) | Std 2<br>(mg/L) | Std 3<br>(mg/L) | Std 4<br>(mg/L) | Std 5<br>(mg/L) | Element | Correlation<br>Coefficient | ICV (% Recovery) |
|---------|-----------------|-----------------|-----------------|-----------------|-----------------|---------|----------------------------|------------------|
|         | (3/             | ( <b>3</b> 7    |                 |                 |                 | AI      | 0.99999                    | 97               |
| AI      |                 |                 | 25              | 100             | 500             | Ba      | 0.99999                    | 98               |
| Ba      | 1               | 10              | 25              |                 |                 | Ca      | 0.99998                    | 101              |
| Ca      |                 |                 | 25              | 100             | 500             | Со      | 0.99993                    | 96               |
| Со      | 1               | 10              | 25              |                 |                 | Cu      | 0.99988                    | 96               |
| Cu      | 1               | 10              | 25              |                 |                 | Fe      | 0.99999                    | 100              |
| Fe      |                 |                 | 25              | 100             | 500             | K       | 0.99992                    | 97               |
| K       |                 |                 | 25              | 100             | 500             | Mg      | 0.99991                    | 108              |
| Mg      |                 |                 | 25              | 100             | 500             | Mn      | 0.99999                    | 102              |
| Mn      | 1               | 10              | 25              |                 |                 | Na      | 0.99985                    | 96               |
| Na      |                 | 10              | 25              | 100             |                 | Ni      | 0.99998                    | 97               |
| Ni      | 1               | 10              | 25              | 100             |                 | Р       | 0.99986                    | 98               |
|         | 1               |                 |                 | 100             |                 | S       | 0.99985                    | 98               |
| Р       |                 | 10              | 25              | 100             |                 | V       | 0.99995                    | 99               |
| S       |                 | 10              | 25              | 100             |                 | Zn      | 0.99990                    | 98               |
| V       | 1               | 10              | 25              |                 |                 |         |                            |                  |
| Zn      | 1               | 10              | 25              |                 |                 |         |                            |                  |



## **Results & Discussion: Accuracy**


#### Analysis of Reference Soil Solutions

| Element |                  | Soil Solution A     |            | Soil Solution B  |                     |            |  |  |
|---------|------------------|---------------------|------------|------------------|---------------------|------------|--|--|
| Liement | Certified (mg/L) | Experimental (mg/L) | % Recovery | Certified (mg/L) | Experimental (mg/L) | % Recovery |  |  |
| AI      | 500              | 459                 | 92         | 700              | 662                 | 95         |  |  |
| Ba      | 5                | 4.75                | 95         | 7.00             | 6.94                | 99         |  |  |
| Ca      | 350              | 343                 | 98         | 125              | 126                 | 101        |  |  |
| Со      |                  | 0.027               |            | 0.100            | 0.087               | 87         |  |  |
| Cu      | 0.300            | 0.289               | 96         | 3.00             | 3.01                | 100        |  |  |
| Fe      | 200              | 201                 | 101        | 350              | 356                 | 102        |  |  |
| К       | 200              | 196                 | 98         | 210              | 210                 | 100        |  |  |
| Mg      | 70               | 73                  | 104        | 80.0             | 82.6                | 103        |  |  |
| Mn      | 0.100            | 0.110               | 110        | 100              | 95.2                | 95         |  |  |
| Na      | 70.0             | 63.8                | 91         | 100              | 92.5                | 92         |  |  |
| Ni      | 0.300            | 0.287               | 96         | 0.20             | 0.20                | 100        |  |  |
| Р       |                  | 6.72                |            |                  | 6.76                |            |  |  |
| S       |                  | 1.86                |            |                  | 2.03                |            |  |  |
| V       | 0.100            | 0.096               | 96         | 0.800            | 0.772               | 97         |  |  |
| Zn      | 1.00             | 1.02                | 102        | 70.0             | 68.9                | 98         |  |  |

- Recoveries within  $\pm$  10 %  $\rightarrow$  accurate methodology
  - Cobalt outlier due to the trace level concentration

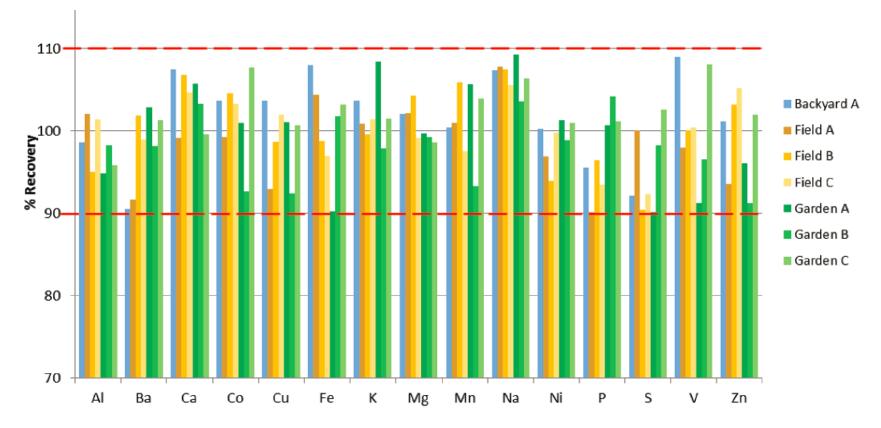


## **Results & Discussion: Sample Analysis**



The different soils analyzed for have similar makeup

- Since this is a logarithmic scale, there are significant differences with Ni and Zn having great variability
- This type of analysis is important for truthful labeling.


## **Results & Discussion: Spike Analysis**

- Soil samples were spiked prior to digestion
  - Added directly to digestion vessels before the addition of acid
- Spike concentrations were expected to be near the analytical values the elements analyzed so that the spike signal is not overwhelmed by the analytical signal
- Spiked to confirm:
  - No analytes losses during the sample preparation process
  - Elimination or accurate IS compensation for matrix effects

#### Spike Levels

| Element | Al   | Ba  | Са   | Со | Cu  | Fe   | K    | Mg   | Mn  | Na  | Ni | Р   | S   | v  | Zn |
|---------|------|-----|------|----|-----|------|------|------|-----|-----|----|-----|-----|----|----|
| Conc.   | 5000 | 500 | 5000 | 50 | 100 | 5000 | 5000 | 5000 | 500 | 500 | 50 | 500 | 400 | 50 | 50 |

## **Results & Discussion: Spike Analysis**



- All spike recoveries within ±10 %
  - Some variability due to the high TDS
  - With microwave digestion and internal standards, compensation for matrix effects was effective and spike recoveries were successful



## Analysis of Micronutrients in Fruit Juice Using the Avio 200 ICP-OES





## **Samples**

0

0

Grape Juice:

- The fruit juice samples selected represent a variety of commonly available consumer products
  - Orange Juice: Two no-pulp 100% juices. One is Ca fortified
  - Apple Juice: Two 100% juices
    - Cranberry Juice: Two juices. One is a juice-blend (not 100%)
      - Two 100% juices



## **Sample Preparation: Microwave Assisted Digestion**

- Titan MPS<sup>™</sup> Microwave Sample Preparation System
  - 5 mL of sample added to Titan 75 mL digestion vessels
  - Add pre-digestion spikes, as required
  - Add 8 mL HNO<sub>3</sub> (70 %) + 2 mL H<sub>2</sub>O<sub>2</sub>
  - Let sit for 10 minutes
  - Cap Vessels
  - Digest
  - Transfer to auto-sampler tubes and dilute to 50 mL with deionized water

#### Titan Digestion Program for Fruit Juice

| Step | Target<br>Temp<br>(°C) | Pressure<br>Limit<br>(bar) | Ramp<br>Time<br>(min) | Hold<br>Time<br>(min) | Power<br>Limit<br>(%) |
|------|------------------------|----------------------------|-----------------------|-----------------------|-----------------------|
| 1    | 150                    | 30                         | 8                     | 5                     | 90                    |
| 2    | 200                    | 30                         | 2                     | 20                    | 100                   |
| 3    | 50                     | 30                         | 1                     | 20                    | 0                     |





## Instrumental Conditions: Avio<sup>™</sup> 200 ICP-OES

#### **Method Parameters**

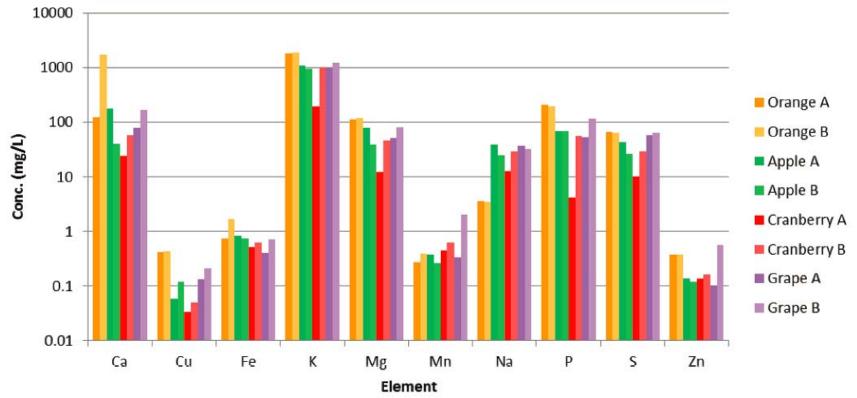
| Element     | Wavelength<br>(nm)           | Plasma View | Integration<br>Range (sec) |
|-------------|------------------------------|-------------|----------------------------|
| Ca          | 317.933                      | Radial      | 0.1 - 5                    |
| Cu          | 327.393                      | Axial       | 0.1 - 5                    |
| Fe          | 238.204                      | Axial       | 0.1 - 5                    |
| К           | 766.490                      | Radial      | 0.1 - 5                    |
| Mg          | 285.213                      | Radial      | 0.1 - 5                    |
| Mn          | 257.610                      | Axial       | 0.1 - 5                    |
| Na          | 589.592                      | Radial      | 0.1 - 5                    |
| Р           | 178.221                      | Axial       | 0.1 - 5                    |
| S           | 181.975                      | Axial       | 0.1 - 5                    |
| Zn          | 206.200                      | Axial       | 0.1 - 5                    |
| Y (int std) | 371.029                      | Radial      | 0.1 - 5                    |
| Y (int std) | 371.029                      | Axial       | 0.1 - 5                    |
|             | Short<br>Integratio<br>Times | on          | Low Argon<br>Flows         |



#### **Instrumental Parameters**

| Parameter                   | Value                  |
|-----------------------------|------------------------|
| Nebulizer                   | Meinhard Glass Type K1 |
| Spray Chamber               | Baffled Glass Cyclonic |
| Sample Uptake Rate (mL/min) | 0.8                    |
| RF Power (W)                | 1500                   |
| Nebulizer Gas (L/min)       | 0.68                   |
| Auxiliary Gas (L/min)       | 0.2                    |
| Plasma Gas (L/min)          | 8                      |

## Instrumental Conditions: Avio<sup>™</sup> 200 ICP-OES


#### **Calibration Standards**

| Element | Std 1<br>(mg/L) | Std 2<br>(mg/L) | Std 3<br>(mg/L) | Std 4<br>(mg/L) |
|---------|-----------------|-----------------|-----------------|-----------------|
| Ca      | -               | -               | 10              | 50              |
| Cu      | 0.1             | 1               | -               | -               |
| Fe      | 0.1             | 1               | -               | -               |
| K       | -               | -               | 10              | 50              |
| Mg      | -               | -               | 10              | 50              |
| Mn      | 0.1             | 1               | -               | -               |
| Na      | -               | -               | 10              | 50              |
| Р       | -               | -               | 10              | 50              |
| S       | -               | -               | 10              | 50              |
| Zn      | 0.1             | 1               | -               | -               |



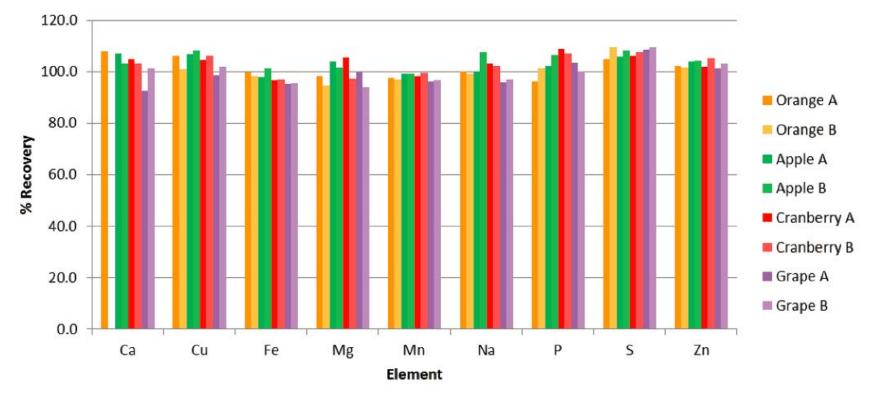
| Element | Correlation Coefficient | ICV Concentration (mg/L) | Measured ICV | ICV (% Recovery) |
|---------|-------------------------|--------------------------|--------------|------------------|
| Ca      | 0.99998                 | 10.0                     | 10.8         | 108              |
| Cu      | Cu 0.99995              |                          | 0.106        | 106              |
| Fe      | 0.99999                 | 0.100                    | 0.099        | 99               |
| K       | 0.99999                 | 10.0                     | 10.6         | 106              |
| Mg      | 0.99989                 | 10.0                     | 10.9         | 109              |
| Mn      | 0.99999                 | 0.100                    | 0.098        | 98               |
| Na      | 0.99999                 | 10.0                     | 10.6         | 106              |
| Р       | 0.99969                 | 10.0                     | 10.6         | 106              |
| S       | 0.99991                 | 10.0                     | 10.5         | 105              |
| Zn      | 0.99995                 | 0.100                    | 0.098        | 98               |

## **Results & Discussion: Sample Analysis**



- The Ca fortified Orange juice "B" is readily identified and confirms labeling
- Different juices do indeed have differing concentrations of micronutrients
- The 100% cranberry and cranberry blend show the greatest differences within a juice family, confirming that 100% juice and juice blends are not the same and that testing for labeling requirements is critical.

## **Results & Discussion: Spike Analysis**


- Juice samples were spiked prior to digestion
  - Added directly to digestion vessels before the addition of acid
- Spike concentrations were expected to be near the analytical values the elements analyzed
- Spiked to confirm:
  - No analytes losses during the sample preparation process
  - Elimination or accurate IS compensation for matrix effects

#### Spike Levels

| Element             | Spike Concentration (mg/L) |
|---------------------|----------------------------|
| Cu, Fe, Mn, Zn      | 2                          |
| Ca, K, Mg, Na, P, S | 50                         |



## **Results & Discussion: Spike Analysis**



- All spike recoveries within ± 10 %
  - No matrix effects
  - No analytes losses
    - K not reported as spike (50 mg/L) was much too low for the K concentration found in the samples (≈1000 mg/L)

## Summary

- The combination of Titan MPS and Avio 200 ICP-OES accurately measures micro and macro nutrients elements in a variety of soil samples and nutritional elements in a variety of fruit juices
- Benefits of using the Titan MPS
  - Easily handles a variety of sample types
  - Faster and more complete digestions than with hot blocks or hot plates
  - Efficient conversion of carbon content to CO<sub>2</sub> to reduce background and matrix effects
  - Effective extraction of elements of interest
- Benefits of using the Avio 200 ICP-OES
  - Significant cost savings by using only 9 L/min of argon
  - Much faster multi-element analysis than Flame AA
  - Able to measure elements which are challenging with Flame AA



Meeting the Challenges of Soil Analysis with the Avio 200 ICP-OES

Introduction Micronutrients contained within soll are the bailding blocks for the coops we eat, process, or feed to ilvestock. These micronutrients provide the core base which we then exercised and east





To download the full application notes, visit www.perkinelmer.com/avio200





ASTM Methods D4951 and D5185 for Lubricants using the Avio<sup>™</sup> 200 ICP-OES

## Two ASTM Methods for Lubricants – D4951 and D5185



Designation: D4951 – 09

Standard Test Method for Determination of Additive Elements in Lubricating Oils by Inductively Coupled Plasma Atomic Emission Spectrometry<sup>1</sup>



Designation: D5185 –  $13^{\epsilon 1}$ 

Standard Test Method for Multielement Determination of Used and Unused Lubricating Oils and Base Oils by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES)<sup>1</sup>

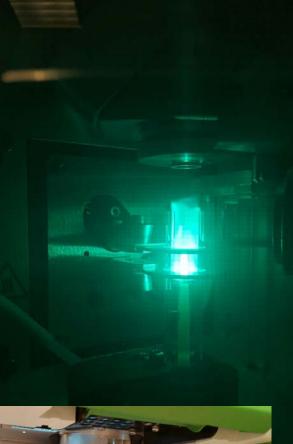


## **D4951 – General Recommendations**

- Wavelengths listed in method are only a suggestion
- Samples prepared by weight to weight with oil and solvent to a 1/10 dilution. Solvent to be used is either xylene, kerosene or a mixture of both
- Requires an internal standard no recommendation for an element
- Run QC every 5 samples, limits are ± 5% (many labs do ± 2%)
- Rinse 60 seconds between each sample

## 🕼 D4951 – 09

| Element                 | Wavelength, nm                         |
|-------------------------|----------------------------------------|
| Barium                  | 233.53, 455.40, 493.41                 |
| Boron <sup>a</sup>      | 182.59, 249.68                         |
| Calcium                 | 315.88, 317.93, 364.4, 422.67          |
| Copper                  | 324.75                                 |
| Magnesium               | 279.08, 279.55, 285.21                 |
| Molybdenum              | 202.03, 281.62                         |
| Phosphorus <sup>®</sup> | 177.51, 178.29, 213.62, 214.91, 253.40 |
| Sulfur <sup>#</sup>     | 180.73, 182.04, 182.62                 |
| Zino                    | 202.55, 206.20, 213.86, 334.58, 481.05 |
|                         |                                        |


#### TABLE 1 Elements Determined and Suggested Wavelengths<sup>4</sup>


A These wavelengths are only suggested and do not represent all possible choices.

<sup>#</sup> Wavelengths for boron, phosphorus, and sulfur below 190 nm require that a vacuum or inert gas purged optical path be used.

## **Instrument Conditions for D4951**

- Plasma Gas 10 L/min
- Aux Gas 0.8 L/min
- Neb Flow 0.40 L/min
- Pump Speed 1.3 mL/min with K-1 nebulizer
- Fast Flush 10 s at 4 mL/min
- Read Delay 25 s
- Replicates 3
- Torch Position -4
- Autosampler Rinse 5 s.
- Tip of the green bullet in the central channel should just be short of touching the top flat plate for best performance





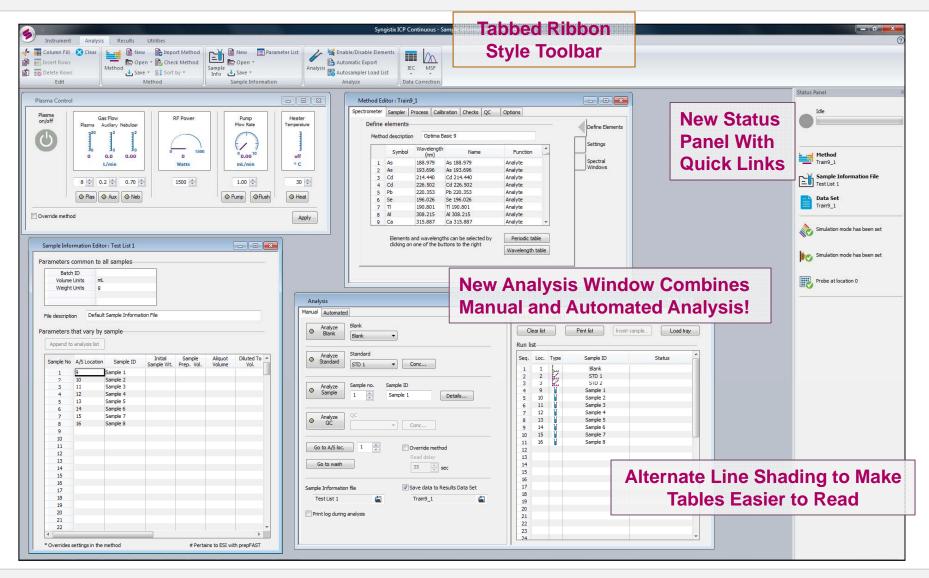
# Typical Blend Plant Run – around 20 samples per day, 3.5 minutes per sample

| Rel            | build list |           | Print list   | Insert sam | ple Load  | d tray |  |
|----------------|------------|-----------|--------------|------------|-----------|--------|--|
| un li          | st         |           |              |            |           |        |  |
| Seq. Loc. Type |            |           | Sample ID    |            | Status    |        |  |
| 1              | 1          | E         | Blank        |            | Applied   |        |  |
| 2              | 2          |           | 100 ppm Std  |            | Applied   |        |  |
| 3              | 3          | E.        | 500 ppm Std  |            | Applied   |        |  |
| 4              | 4          |           | MA4          |            | Applied   |        |  |
| 5              | 4          | QC<br>K+  | MA4          |            | QC Passed |        |  |
| 6              | 5          | Y         | Oil Sample 1 |            | Analyzed  |        |  |
| 7              | 6          | Ŭ         | Oil Sample 2 | -          | Analyzed  |        |  |
| 8              | 7          | Ŭ         | Oil Sample 3 |            | Analyzed  |        |  |
| 9              | 8          | Ŭ         | Oil Sample 4 |            | Analyzed  |        |  |
| 10             | 9          | Ň         | Oil Sample 5 |            | Analyzed  |        |  |
| 11             | 4          | QC<br>+++ | MA4          |            | QC Passed |        |  |
| 12             | 5          | Y         | Oil Sample 1 |            | Analyzed  |        |  |
| 13             | 6          | Ĭ         | Oil Sample 2 | -          | Analyzed  |        |  |
| 14             | 7          | Ň         | Oil Sample 3 |            | Analyzed  |        |  |
| 15             | 8          | Ŭ         | Oil Sample 4 |            | Analyzed  |        |  |
| 16             | 9          | Ň         | Oil Sample 5 |            | Analyzed  |        |  |
| 17             | 4          | QC<br>+++ | MA4          |            | QC Passed |        |  |
| 18             | 5          | V         | Oil Sample 1 |            | Analyzed  |        |  |
| 19             | 6          | Ĭ         | Oil Sample 2 | -          | Analyzed  |        |  |
| 20             | 7          | Ŭ         | Oil Sample 3 |            | Analyzed  |        |  |
| 21             | 8          | Ŭ         | Oil Sample 4 |            | Analyzed  |        |  |
| 22             | 9          | Ň         | Oil Sample 5 |            | Analyzed  |        |  |
| 23             | 4          | QC<br>+++ | MA4          |            | QC Passed |        |  |
| 24             | 5          | V         | Oil Sample 1 |            | Analyzed  |        |  |
| 25             | 6          | Ŭ         | Oil Sample 2 | -          | Analyzed  |        |  |
| 26             | 7          | Ŭ         | Oil Sample 3 |            | Analyzed  |        |  |
| 27             | 8          | Ŭ         | Oil Sample 4 |            | Analyzed  |        |  |
| 28             | 9          | Ŭ         | Oil Sample 5 |            | Analyzed  |        |  |
| 29             | 4          | QC<br>→   | MA4          |            | QC Passed |        |  |
| 30             |            |           |              |            | •         |        |  |
| 31             |            |           |              |            |           |        |  |

#### First QC

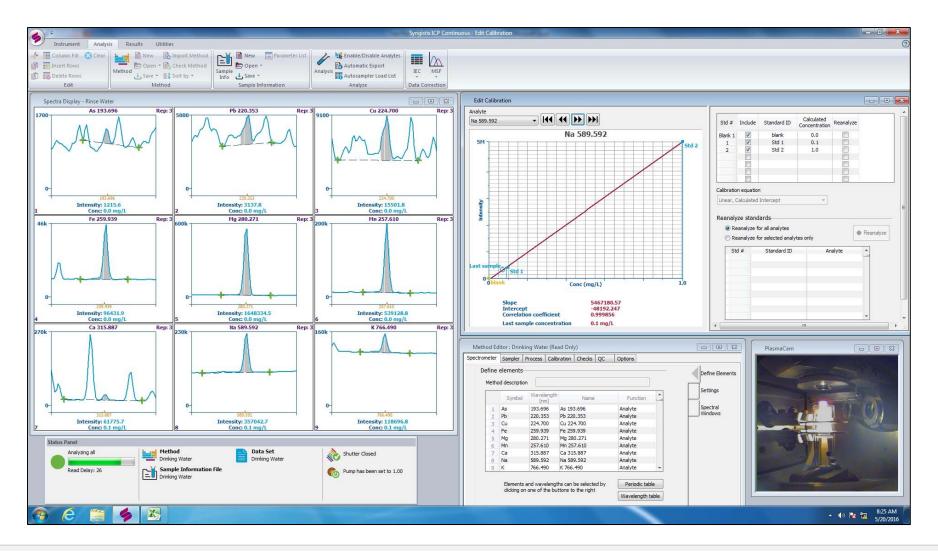
|                 | Mean Corrected   |         | Calib.    |           |       | Sample |          |      |
|-----------------|------------------|---------|-----------|-----------|-------|--------|----------|------|
| Analyte         | Intensity        | Conc.   | Units     | Std.Dev.  | Conc. | Units  | Std.Dev. | RSD  |
| Co 228.616      | 8190192.3        | 95      | 8         | 0.91      |       |        |          | 0.95 |
| Ca 315.887†     | 114766628        | 4994    | ppm       | 60.23     | 4994  | ppm    | 60.23    | 1.21 |
| QC value within | limits for Ca 31 | 5.887 H | Recovery  | = 99.89%  |       |        |          |      |
| Mg 279.077†     | 5721824.7        | 1614    | ppm       | 14.02     | 1614  | ppm    | 14.02    | 0.87 |
| QC value within | limits for Mg 27 | 9.077 H | Recovery  | = 100.88% |       |        |          |      |
| P 214.914†      | 1157793.8        | 1602    | ppm       | 15.29     | 1602  | ppm    | 15.29    | 0.95 |
| QC value within | limits for P 214 | .914 Re | ecovery = | = 100.10% |       |        |          |      |
| Zn 213.857†     | 34972898.4       | 1587    | ppm       | 18.76     | 1587  | ppm    | 18.76    | 1.18 |
| QC value within | limits for Zn 21 | 3.857 H | Recovery  | = 99.17%  |       |        |          |      |

#### Last QC


|                 | Mean Corrected     | Calib.         |           |       | Sample |          |       |
|-----------------|--------------------|----------------|-----------|-------|--------|----------|-------|
| Analyte         | Intensity          | Conc. Units    | Std.Dev.  | Conc. | Units  | Std.Dev. | RSD   |
| Co 228.616      | 7866844.9          | 91 %           | 0.32      |       |        |          | 0.35% |
| Ca 315.887†     | 117022271          | 5093 ppm       | 52.88     | 5093  | ppm    | 52.88    | 1.04% |
| QC value within | n limits for Ca 31 | 5.887 Recovery | = 101.85% |       |        |          |       |
| Mg 279.077†     | 5782514.3          | 1631 ppm       | 2.11      | 1631  | ppm    | 2.11     | 0.13% |
| QC value within | n limits for Mg 27 | 9.077 Recovery | = 101.95% |       |        |          |       |
| P 214.914†      | 1178517.5          | 1630 ppm       | 17.76     | 1630  | ppm    | 17.76    | 1.09% |
| QC value within | n limits for P 214 | .914 Recovery  | = 101.89% |       |        |          |       |
| Zn 213.857†     | 35827481.9         | 1625 ppm       | 3.17      | 1625  | ppm    | 3.17     | 0.20% |
| OC volue within | n limits for Zn 21 | 3 957 Pecoveru | - 101 598 |       |        |          |       |

## **Syngistix software for ICP-OES**






## **Syngistix: New Look and Feel**





## Syngistix for ICP – Version 2.0





## Syngistix: Cross-Tab Data Viewer

- Presents results in tabular format
- 5 separate tabs allow easy data review and quality control
  - Corrected Intensities
  - Concentration In Calibration Units
  - Concentration in Sample Units
  - Internal Standards
  - QC
- One-button function exports data to Excel

| Data     | Viewer         |           |           |                     |                                |                     |             |                |                |                      |                  |                |            |                  |               |                    |        | • ×                  |            |
|----------|----------------|-----------|-----------|---------------------|--------------------------------|---------------------|-------------|----------------|----------------|----------------------|------------------|----------------|------------|------------------|---------------|--------------------|--------|----------------------|------------|
| Correcte | d Intensitie   | s         | Conc. i   | n Calib. I          | Units Conc. in S               | amole Units In      | ternal St   | andards        | QC             |                      |                  |                |            |                  |               |                    |        |                      | 2          |
|          | w RSDs         | 1         |           |                     |                                |                     |             |                |                |                      |                  |                |            |                  |               |                    |        |                      | -          |
|          |                | San       | nple Io   | i                   | Y 371.029<br>(cps)             | Cd 214.440<br>(cps) |             |                |                |                      |                  |                |            |                  |               |                    |        | *                    |            |
| 1        | blank          |           |           |                     | 1019763.37                     | 13.27               | -           |                |                |                      |                  |                |            |                  |               |                    |        |                      |            |
| 2        | std 1          |           |           |                     | 1061262.79                     | 10034.43            | 1           |                |                |                      |                  |                |            |                  |               |                    |        |                      |            |
| 3        | Unknown        | а         |           |                     | 1019349.58                     | 4587.28             | 1           |                |                |                      |                  |                |            |                  |               |                    |        |                      |            |
| 4        | Unknown        | b         |           |                     | 925576.23                      | 2350.99             | 1           |                |                |                      |                  |                |            |                  |               |                    |        |                      |            |
|          |                |           | nple Id   |                     | As 188.979                     | As 193.696          |             |                | Cd 226         |                      |                  | 5e 196         |            |                  |               | a 315.887          |        | 73.955               |            |
|          |                | 2011      | iipie I   |                     | (cps)                          | (cps)               |             | ps)            | (cps           |                      | cps)             | (cps           |            | cps)             | (cps)         | (cps)              |        | ps)                  |            |
| 5        | Blank          |           |           |                     | -1.25                          | -0.62               | 0.96        |                | -2.21          | -2.05                |                  | 3.92           | 0.31       |                  | 8.77 -        | 1363.48            | -4.77  |                      |            |
|          | 9              | San       | nple Io   | ł                   | As 188.979<br>(cps)            | As 193.696<br>(cps) | Cd 21<br>(c |                | Cd 226<br>(cps |                      | 20.353 :<br>:ps) | 5e 196<br>(cps |            | 90.801<br>cps)   |               |                    |        |                      |            |
| 6        | STD 1          | Sample Id |           | 227.03              | 244.72                         | 2040.6              | 8 4         | 4106.30        | 247.6          | 6 !                  | 140.37           | 187.           | 14         |                  |               |                    |        |                      |            |
|          | 5              |           |           | Al 308.215<br>(cps) | Ca 315.887<br>(cps)            | Fe 27<br>(c         |             | Mg 279<br>(cps |                | 67.716<br>cps)       | Cu 327<br>(cps   |                |            |                  |               |                    | Ξ      |                      |            |
| 7        | STD 2          |           | 133989.89 | 224762.81           | 22557                          | .33 :               | 134774.     | 51 1664        | 8.86 6         | 58723.9              | 1                |                |            |                  |               |                    |        |                      |            |
|          | 9              | 5an       | nple Id   | ł                   | As 188.979<br>(cps)            | As 193.696<br>(cps) | Cd 21<br>(c |                | Cd 226<br>(cps |                      | 20.353 (<br>ps)  | 5e 196<br>(cps |            | 90.801 A<br>cps) | 308.215 (cps) | a 315.887<br>(cps) |        | 73.955<br>:ps)       |            |
| 8        | Unknown        |           |           |                     | 19.21                          | 14.69               | 193.68      | 4              | 486.01         | 34.13                |                  | 10.33          | 19.24      | 4 27             | 1827.06 4     | 53639.62           | 44217  | 7.78                 |            |
| 9        | 500 ppm        |           | Data      | Viewer              |                                |                     |             |                |                |                      |                  |                |            |                  |               |                    |        |                      |            |
| 10       | 500 ppm        | 6         | Correcte  | ed Intens           | ities Conc. in Ca              | lib. Units Conc     | . in Sam    | ole Units      | Interna        | al Standards         | QC               | _              |            |                  |               |                    | _      |                      |            |
| 11       | 200 ppm        |           | _         |                     | lards Calibratio               |                     |             |                |                |                      |                  |                |            |                  |               |                    |        |                      |            |
| 12       | 500 ppm        |           | _         |                     |                                | nonius              |             |                |                |                      |                  |                |            |                  |               |                    |        |                      |            |
| 13       | 25 ppm 😑 QC ST |           |           | QC SI               | 1                              | mala Td             |             | As 188         | 070            | As 193.696           | As 197.          | 107 0          | РЬ 220.353 | Pb 217.00        | 0 Pb 261.4    | 18 Se 196.         | 0.26   | Se 203.985           | TI 190.8(  |
| 14       | 25 ppm         |           |           | 13                  | DL Std N930022                 | mple Id             |             |                | .0222          | AS 193.696<br>1.0087 |                  | 197 P          | 0.5084     | PD 217.00        | _             |                    | .026 : | 5e 203.985<br>0.5146 |            |
| 15       | Unknow         |           |           | 15                  | DL 510 195002                  | 21                  | RSD         | -              | .0222          | 1.0007               |                  | 39%            | 0.5004     |                  |               |                    | .18%   | 2.29%                |            |
|          |                |           |           |                     |                                | 96 D                | ecovery     |                |                | 1.03%                | 102.             |                | 101.68%    | 101.18           |               |                    | .15%   | 102.93%              |            |
| Advar    | nced           |           |           | 19                  | DL Std N930022                 |                     | covery      |                | .0081          | 1.0049               |                  | 0135           | 0.5038     | 0.49             |               |                    | .5058  | 0.5040               |            |
|          |                |           |           |                     | 02 310 10 5002                 |                     | RSD         |                | .49%           | 0.89%                |                  | 24%            | 0.37%      | 3.04             |               |                    | .16%   | 2.19%                |            |
|          |                |           |           |                     |                                | % R                 | ecovery     |                | .81%           | 100.49%              |                  |                | 100.76%    | 99.31            |               | _                  | .16%   | 100.80%              |            |
|          |                |           |           | 20                  | DL Std N930022                 |                     |             |                | .6238          | 0.6083               |                  | 5298           | 0.3099     | 0.29             |               |                    | 3272   | 0.3359               | -          |
|          |                |           |           |                     |                                |                     | RSD         |                | 2.77%          | 2.52%                |                  | 09%            | 2.11%      | 0.53             | -             |                    | 39%    | 1.54%                |            |
|          |                |           |           |                     |                                | % R                 | ecovery     |                | .38%           | 60.83%               | 62.              | 98%            | 61.98%     | 58.71            |               |                    | .45%   | 67.18%               |            |
|          |                |           |           | 23                  | DL Std N930022                 |                     |             |                | .6319          | 0.6194               |                  | 5350           | 0.3052     | 0.29             |               | _                  | .3220  | 0.3351               |            |
|          |                |           |           |                     |                                |                     | RSD         |                | .68%           | 0.31%                |                  | 67%            | 2.44%      | 2.62             |               |                    | .17%   | 2.05%                |            |
|          |                |           |           |                     |                                | % R                 | ecovery     | 63             | .19%           | 61.94%               | 63.              | 50%            | 61.04%     | 58.84            | % 61.80       | 8% 64              | .39%   | 67.03%               | 65.7       |
|          |                |           | Ξ         | QC ST               | rd 3                           |                     |             |                |                |                      |                  |                |            |                  |               |                    |        |                      |            |
|          |                |           |           |                     | Sa                             | mple Id             |             | As 188         | .979           | As 193.696           | As 197.          | 197 P          | Pb 220.353 | Pb 217.00        | 0 Pb 261.41   | L8 Se 196.         | .026   | Se 203.985           | TI 190.80  |
|          |                |           |           | 24                  | DL Std N930022                 | 21                  |             | 0.             | .6319          | 0.6194               | 0.6              | 5350           | 0.3052     | 0.29             | 2 0.30        | 94 0.              | .3220  | 0.3351               | 0.65       |
|          |                |           |           |                     |                                |                     | RSD         |                | .68%           | 0.31%                |                  | 67%            | 2.44%      | 2.62             |               |                    | .17%   | 2.05%                |            |
|          |                |           |           |                     |                                | % R                 | ecovery     |                | .19%           | 61.94%               |                  | 50%            | 61.04%     | 58.84            | _             | _                  | .39%   | 67.03%               |            |
|          |                |           |           | 25                  | DL Std 2                       |                     |             |                | .6319          | 0.6194               |                  | 5350           | 0.3052     | 0.29             |               |                    | .3220  | 0.3351               |            |
|          |                |           |           |                     |                                |                     | RSD         |                | .68%           | 0.31%                |                  | 67%            | 2.44%      | 2.62             |               |                    | .17%   | 2.05%                |            |
|          |                |           | 1.0       |                     |                                |                     | ecovery     | 63             | .19%           | 61.94%               | 63.              | 50%            | 61.04%     | 58.84            | % 61.80       | 3% 64              | .39%   | 67.03%               | 65.7.      |
|          |                |           | = Q       | C Spike             | s (% Recovery                  |                     |             |                |                |                      |                  |                |            |                  |               | -                  |        |                      |            |
|          |                |           |           |                     |                                | ample Id            |             | As 188         | .979           | As 193.696           | As 197.          | 197 P          | Pb 220.353 | Pb 217.00        | 0 Pb 261.4    | 18 Se 196.         | .026   | Se 203.985           | TI 190.80  |
|          |                |           |           | 17                  | MS (DL STD),<br>Spike 1 of Row | Index 16            |             | 102            | .63%           | 102.22%              | 100.             | 96%            | 103.00%    | 102.51           | % 101.47      | 100                | .15%   | 106.41%              | 101.3      |
|          |                |           | •         | 22                  | MS (DL STD),                   |                     |             | 66             | .15%           | 64.68%<br>III        | 65.              | 58%            | 63.81%     | 63.57            | 63.83         | 64                 | .63%   | 66.22%               | 65.8       |
|          |                |           | Adva      | nced                |                                |                     |             |                |                |                      |                  |                |            |                  |               |                    | E      | xport All            | Clear Data |
|          |                | 1         | -         |                     |                                |                     |             |                |                |                      |                  |                |            |                  |               |                    |        |                      |            |



## Avio 200 ICP-OES Pre-Loaded Methods (1)

| ne Mill          | k                          |                              |                                    |          |
|------------------|----------------------------|------------------------------|------------------------------------|----------|
| cription Ne      | bulizer =Meinhard K1; Spra | y Chamber =Glass Cydonic     |                                    |          |
| t by 🔘 Name 🔘 D  | ate/time                   |                              |                                    |          |
| Name             | Elements                   | Date / Time                  | Description                        | 4        |
| Milk             | Fe,P,Sr,Mg,K,Y,Ba          | N08/apr/2016 07:41:02 Nebu   | lizer=Meinhard K1; Spray Chamber   | =Glass ( |
| RoHS             | Cd,Y,Pb,Cr,Hg              | 07/apr/2016 09:04:56 nebu    | lizer=cross flow; spray chamber=R  | yton Scc |
| Juice            | Fe,P,Mg,K,Cu,Y,Mr          | n,107/apr/2016 08:16:22 Mein | hard K1;Glass Cyclonic;Digested;5% | 6 HNO3   |
| Soil-15 elements | Fe,Co,P,Ni,Al,Mg,K         | ,C07/apr/2016 08:15:57 Mein  | hard K1;Glass Cyclonic;Digested;2% | 6 HNO3-  |
|                  |                            |                              |                                    |          |
|                  |                            |                              |                                    |          |
|                  |                            |                              |                                    |          |

## **Avio 200 ICP-OES Pre-Loaded Methods (2)**

| ectrometer | Sampler F     | Process Calib      | ration Checks                           | QC Options                    |          |                 |
|------------|---------------|--------------------|-----------------------------------------|-------------------------------|----------|-----------------|
| Define     | elements-     |                    |                                         |                               |          |                 |
|            |               |                    |                                         |                               |          | Define Elements |
| Metho      | d description | Meinhard           | K1;Glass Cyclonic                       | Digested;2% HNO3-4            |          |                 |
|            | Symbol        | Wavelength<br>(nm) | Name                                    | Function                      | <u>^</u> | Settings        |
| 1          | Al            | 308.215            | Al 308.215                              | Analyte                       |          | Spectral        |
| 2          | Ba            | 233.527            | Ba 233.527                              | Analyte                       |          | Windows         |
| 3          | Ca            | 317.933            | Ca 317.933                              | Analyte                       |          |                 |
| 4          | Co            | 228.616            | Co 228.616                              | Analyte                       |          |                 |
| 5          | Cu            | 327.391            | Cu 327.393                              | Analyte                       |          |                 |
| 6          | Fe            | 238.204            | Fe 238.204                              | Analyte                       |          |                 |
| 7          | К             | 766.490            | K 766.490                               | Analyte                       |          |                 |
| 8          | Mg            | 285.216            | Mg 285.213                              | Analyte                       |          |                 |
| 9          | Mn            | 257.610            | Mn 257.610                              | Analyte                       |          |                 |
| 10         | Na            | 589.592            | Na 589.592                              | Analyte                       |          |                 |
| 11         | Ni            | 231.604            | Ni 231.604                              | Analyte                       |          |                 |
| 12         | P             | 178.222            | P 178.221                               | Analyte                       |          |                 |
| 13         | S             | 181.977            | S 181.975                               | Analyte                       |          |                 |
| 14         | V             | 292.464            | V 292.464                               | Analyte                       |          |                 |
| 15         | Y             | 371.031            | Y-radial                                | Int. Std.                     |          |                 |
| 16         | Y             | 371.031            | Y-axial                                 | Int. Std.                     |          |                 |
| 17         | Zn            | 206.200            | Zn 206.200                              | Analyte                       |          |                 |
| 18         |               |                    |                                         |                               | -        |                 |
|            |               |                    | ns can be selected<br>tons to the right | by Periodic tal<br>Wavelength |          |                 |



## Avio 200 ICP-OES Pre-Loaded Methods (3)

| _ | neter<br>asma | Sam     | pler Process          | Calibratio        | _              | ks QC          | Optio            | ns            |                 | Plasma        |
|---|---------------|---------|-----------------------|-------------------|----------------|----------------|------------------|---------------|-----------------|---------------|
|   |               |         | libration delay       | 14 🌲              | -              |                |                  |               |                 | Peristaltic P |
|   | Plasma        |         |                       | 0                 | e for all e    | elements       | ۹ (              | /ary by (     | element         |               |
|   | Mo            | nitor i | nebulizer back p      |                   |                |                |                  |               |                 | Autosample    |
|   | Ch            | neck u  | pper %                | Action t          | aken afte      | er alarm is    | ; triggered      | 1             |                 |               |
|   | 1             | .0      |                       | Stop              |                |                | -                |               |                 |               |
|   |               | F'n     | Analyte               | Plasma<br>(L/min) | Aux<br>(L/min) | Neb<br>(L/min) | Power<br>(watts) | View<br>Dist. | Plasma<br>View  | <u> </u>      |
|   |               |         | All                   | 8                 | 0.2            | 0.70           | 1500             | 15.0          | Axial           |               |
|   | 1             | Α       | Al 308.215            | 8                 | 0.2            | 0.70           | 1500             | 15.0          | Radial          |               |
|   | 2             | Α       | Ba 233.527            | 8                 | 0.2            | 0.70           | 1500             |               | Radial          |               |
|   | 3             | Α       | Ca 317.933            | 8                 | 0.2            | 0.70           | 1500             | 15.0          | Radial          |               |
|   | 4             | Α       | Co 228.616            | 8                 | 0.2            | 0.70           | 1500             |               | Axial           |               |
|   | 5             | Α       | Cu 327.393            | 8                 | 0.2            | 0.70           | 1500             |               | Axial           |               |
|   | 6             | Α       | Fe 238.204            | 8                 | 0.2            | 0.70           | 1500             |               | Radial          |               |
|   | 7             | Α       | K 766.490             | 8                 | 0.2            | 0.70           | 1500             |               | Radial          |               |
|   | 8             | Α       | Mg 285.213            | 8                 | 0.2            | 0.70           | 1500             |               | Radial          |               |
|   | 9             | Α       | Mn 257.610            | 8                 | 0.2            | 0.70           | 1500             |               | Radial          |               |
|   | 10            | A       | Na 589.592            | 8                 | 0.2            | 0.70           | 1500             |               | Radial          |               |
|   | 11            | A       | Ni 231.604            | 8                 | 0.2            | 0.70           | 1500             |               | Axial           |               |
|   | 12            | A       | P 178.221             | 8                 | 0.2            | 0.70           | 1500             |               | Axial           |               |
|   | 13            | A       | S 181.975             | 8                 | 0.2            | 0.70           | 1500             |               | Axial           |               |
|   | 14            | A       | V 292.464             | 8                 | 0.2            | 0.70           | 1500             |               | Axial           |               |
|   | 15            | IS      | Y-radial              | 8                 | 0.2            | 0.70           | 1500             |               | Radial<br>Axial |               |
|   | 16            | IS<br>A | Y-axial<br>Zn 206.200 | 8                 | 0.2            | 0.70           | 1500<br>1500     |               | Axial           |               |
|   | 17            | A       | 211 200, 200          | •                 | 0.2            | 0.70           | 1500             | 15.0          | AXIdi           | - I           |
|   |               |         |                       |                   |                |                |                  |               |                 |               |
|   |               |         |                       |                   |                |                |                  |               |                 |               |



## Avio 200 ICP-OES Pre-Loaded Methods (4)

|   | Method Ed    | itor : Soil-15 elem |             |            |           |             | - • •               |
|---|--------------|---------------------|-------------|------------|-----------|-------------|---------------------|
|   | Spectrometer | Sampler Process     | Calibration | Checks QC  | Options   |             |                     |
|   | Calibra      | tion units and sta  | ndard conce | entrations |           |             | Define<br>Standards |
| н |              | Analyte             | Calib Units | Cal STD 1  | Cal STD 2 | Cal STD 3 🔺 | Calib Units and     |
| L | 1            | Al 308.215          | mg/L 👻      |            |           | 25          | Concentrations      |
| L | 2            | Ba 233.527          | mg/L        | 1          | 10        | 25          | Blank Usage         |
|   | 3            | Ca 317.933          | mg/L        |            |           | 25          | Diank Usage         |
| L | 4            | Co 228.616          | mg/L        | 1          | 10        | 25          | Fi l                |
| L | 5            | Cu 327.393          | mg/L        | 1          | 10        | 25          | Equations and       |
| L | 6            | Fe 238.204          | mg/L        |            |           | 25          | Sample Units        |
| L | 7            | K 766.490           | mg/L        |            |           | 25          | Initial Calibration |
| L | 8            | Mg 285.213          | mg/L        |            |           | 25          |                     |
| L | 9            | Mn 257.610          | mg/L        | 1          | 10        | 25          | Multiline           |
| L | 10           | Na 589.592          | mg/L        |            | 10        | 25          | Calibration         |
| L | 11           | Ni 231.604          | mg/L        | 1          | 10        | 25          |                     |
| L | 12           | P 178.221           | mg/L        |            | 10        | 25          | Recalibration       |
| L | 13           | S 181.975           | mg/L        |            | 10        | 25          | $\vdash$            |
| L | 14           | V 292.464           | mg/L        | 1          | 10        | 25          |                     |
| L | 17           | Zn 206.200          | mg/L        | 1          | 10        | 25          |                     |
| L |              |                     |             |            |           | <b>v</b>    |                     |
| П | <            |                     |             |            |           | •           |                     |
|   |              |                     |             |            |           |             |                     |
|   |              |                     |             |            |           |             |                     |
|   |              |                     |             |            |           |             |                     |
| 1 |              |                     |             |            |           |             |                     |



## Syngistix sw common paltform for AA, ICP and ICP-MS

- Syngistix is the new software platform from PerkinElmer for AA, ICP and ICP-MS
- Syngistix has replaced WinLab32 for AA, WinLab32 for ICP and NexION Software Platforms





# Questions?