Uncover the insight with Hyphenation

Gerlinde Wita October 2015

JOIN THE CONVERSATION PERKINELMER INTOURS 2015

Let's start from the beginning

Outline

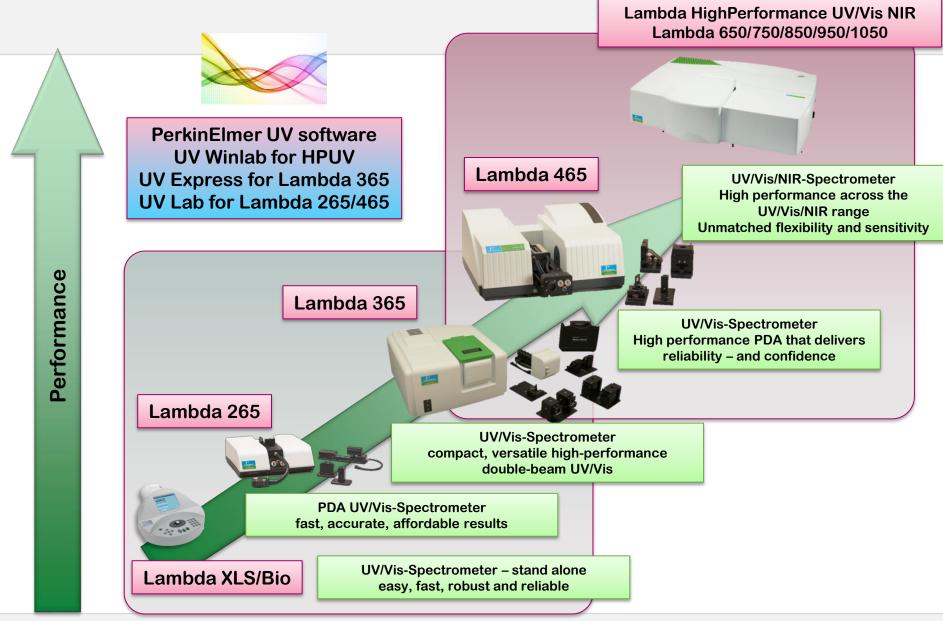
- Material Characterization at PerkinElmer
- Thermal Analysis
 - DSC, TMA, DMA, TGA
 - And some examples
- Hyphenation
 - What is hyphenation?
 - Evolving Gas Analysis
 - TGA-IR
 - TGA-MS
 - TGA-GCMS
 - TGA-IR-GCMS
 - And some of their applications

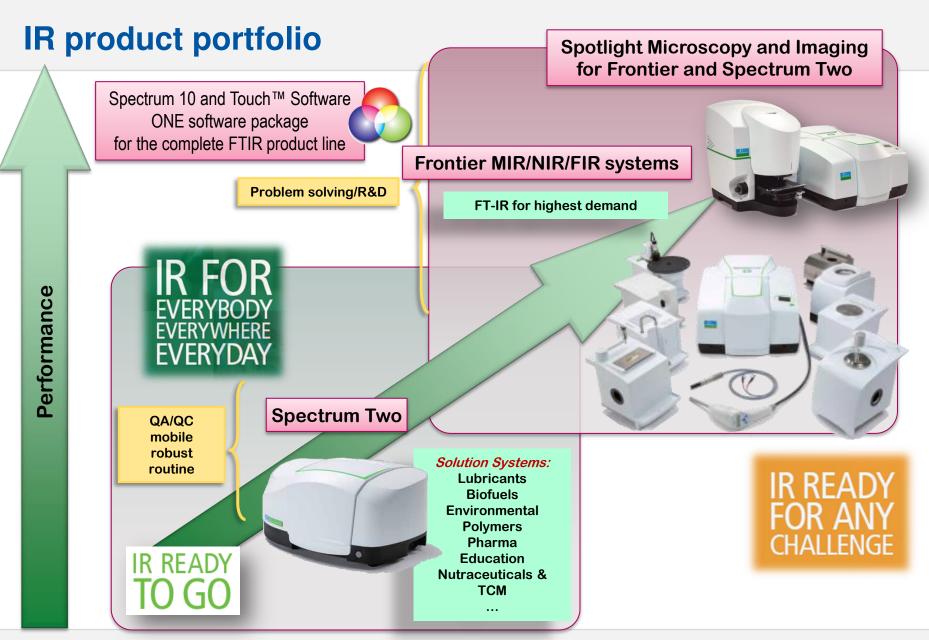
Material Characterisation at PerkinElmer

UV/Vis /NIR Spectroscopy

From routine QA/QC to high demanding UV/Vis/NIR applications
Academia, Pharma, Coatings, Glass

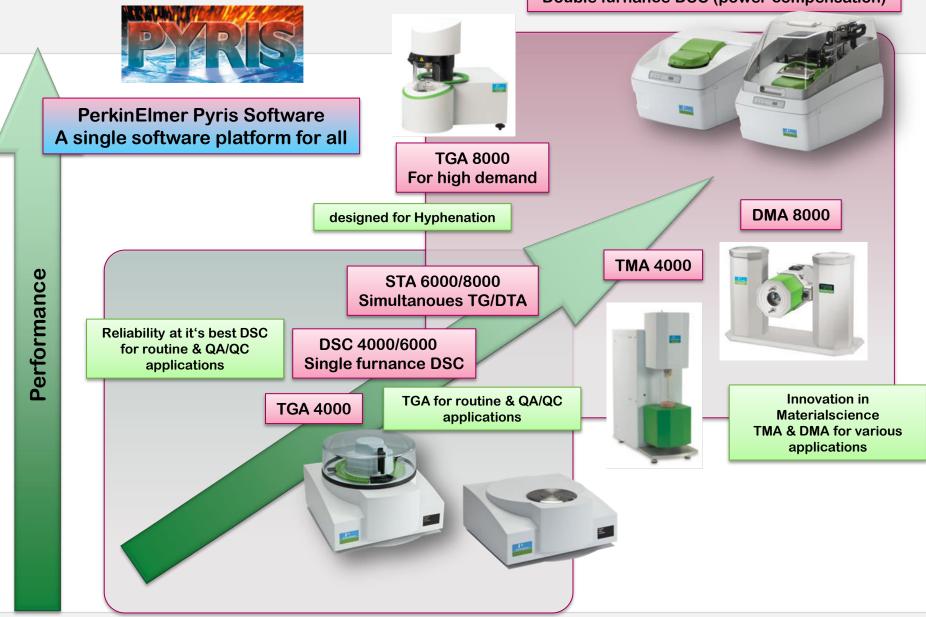
IR Spectroscopy


- From simple Identification for incoming materials to research grade FTIR/FTNIR applications
- Polymer, Pharma, Academia, Food


Thermal Analysis

- To measure thermal properties for QA/QC and process optimization
- Polymer, Pharma, Academia

UV/Vis/NIR product portfolio


..the broadest product portfolio - for each application the right solution

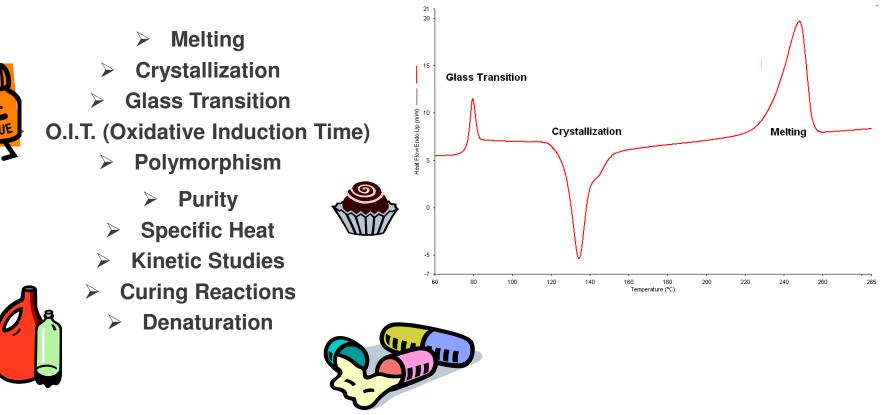
6

Thermal analysis product portfolio

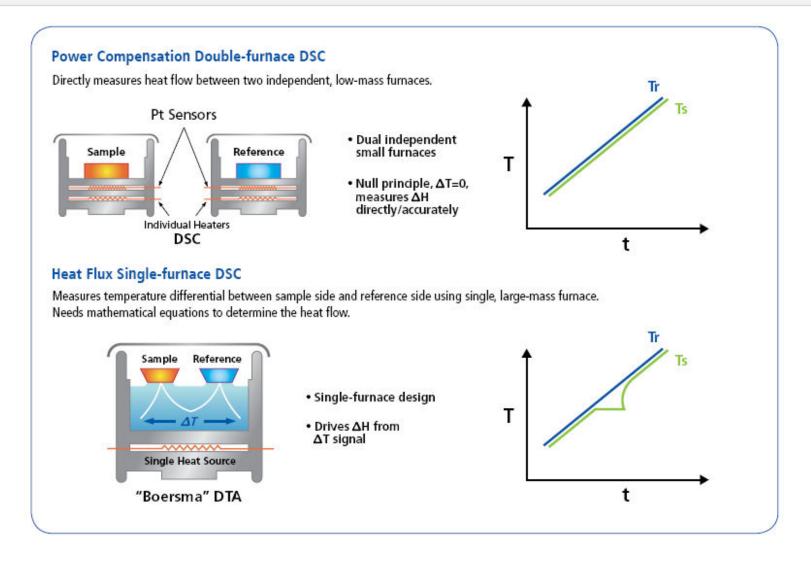
DSC 8000/8500 Double furnance DSC (power compensation)

7 ... the broadest product portfolio - for each application the right solution

Thermal Analysis - Techniques


Thermal Analysis

	DSC	TGA	DMA	ТМА
Full name	Differential Scanning Calorimetry	Thermogravimetric Analysis	Dynamic Mechanical Analysis	<u>Thermomechanical</u> Analysis
Property	Enthalpy	Weight change	Elasticity	Dimensions
Glass transition	1		× ×	A 4
Melting	\checkmark		\checkmark	1
Crystallization	$\checkmark \checkmark$		1	V
Specific heat capacity	1			
Thermal history	~~		1	V
Curing, polymerization	11	*	1	\checkmark
Evaporation, dehydration	~	×		
Thermal decomposition	\checkmark	\checkmark		
Modulus, stiffness			V	1
Thermal expansion/shrinkage				1

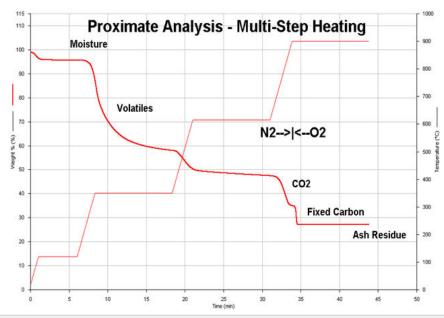

DSC – Differential Scanning Calorimeter What does DSC measure?

• DSC measures the amount of energy (heat) absorbed or released by a sample as it is heated, cooled or held at constant temperature. DSC also performs precise temperature measurements.

DSC is used to analyze

DSC – Differential Scanning Calorimeter Power Compensation vs Heat Flux

DSC – Differential Scanning Calorimeter Mass and volume comparison


- Main reasons why we can do fast scan DSC
 - Smaller furnaces
 - More >100g (heat flux) versus <3g (power compensated)
 - Better temperature controlled on a small thermal mass
 - 90% Pt furnace
 - With its highly conductive material, the Pt furnaces are much easier to heat up and cool down
 - The furnace cradles the sample
 - The sample heats faster and more evenly
 - Powerful heater
 - Cover the whole bottom of each furnace to give an even and maximum power

TGA – Thermo Gravimetric Analysis

A *Thermogravimetric Analyzer* (TGA) measures the change in mass of a sample

- Proximate analysis: filler content, carbon black content
- Performance of Stabilizers, Effects of Fillers & Additives
- Decomposition Temperatures
- Oxidation Stability

Hyphenation What do we mean by hyphenation?

- Definition
 - A set of instruments connected together to allow more information to be obtained from one run.
 - The name comes from the hyphen used in print to designate the instruments are linked.
- Some well known hyphenated techniques

Hyphenation Type of hyphenation with thermal analysis

- Modification of the sample environment
 - UV-DSC
 - UV-DMA
 - %RH-DMA

- Evolved Gas Analysis (EGA)
 - TGA-IR
 - TGA-MS
 - TGA-GCMS
 - TGA-IR-GCMS

Hyphenation Who could be interested?

Polymer and material

- Polymer (or blend) degradation
- Material safety and toxicity
- Polymer identification
- Nanomaterials
- Studies of coatings
- Polymer crystallinity studies
- Pharmaceutical
 - Studies of polymorphs
 - Solvent residues

- Environmental
 - Soil contamination
- Energy
 - Oil and biofuel
 - Solar cell
 - Fuel Cell
- Food
 - Contaminents
 - R&D

Hyphenation – some applications

- TGA-IR
 - Soil analysis
 - Analysis of Layers of a Cable Used in the Automotive Industry
 - Plasticizer Characterization
 - Analysis of Decomposition Products of a Drug
- TGA-MS
 - Residual Solvent Contamination
 - The Analysis of Ethylene Vinyl Acetate
 - High Sensitivity Study of a Solvent of Recrystallization in a Pharmaceutical
- TGA-GCMS
 - Enabling the Analysis of Complex Matrices in Coffee Beans
 - The Analysis of PVC with Different Phthalate Content
 - Qualitative Analysis of Evolved Gases
- TGA-IR-GCMS
 - Unknown aqueous sample

Evolving Gas Analysis (EGA) Why Studying Evolving Gas?

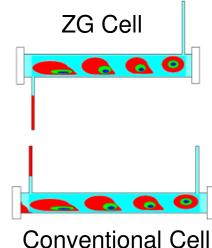
- TGA tells you when and how much but not what came off
- What came off is important because:
 - It gives you a better understanding of a complex material
 - It explains reaction mechanism
 - It tells you what the reaction by-products are
 - It tells you which solvents are present
 - It allows a greater understanding of the decomposition

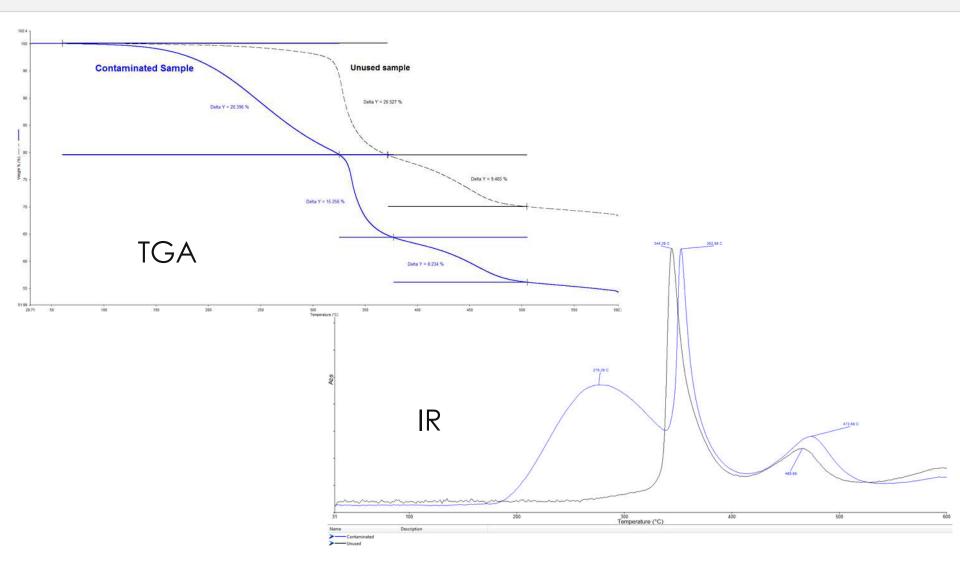
Evolving Gas Analysis (EGA) How Evolving Gas Analysis (EGA) works

- Gas is evolved from a thermal instrument
 - Normally a TGA or STA
 - Gases can be from the evaporation, boiling, or sublimation of solvents
 - Gases can result from reactions, including burning
- A transfer line system moves it to another instruments
 - The line must be inert and heated
 - Temperature must be controlled
 - Somehow the second instrument needs to know the gas is coming across
- A second instrument then measures the components of the gas
 - FTIR allows detection by functional groups
 - MS by mass ion
 - GCMS by chromatography and then MS
- Sometimes a third instrument is added if the previous one is nondestructive.
 - Normally IR followed by MS or GCMS

TG-IR What is needed for TGA-IR?

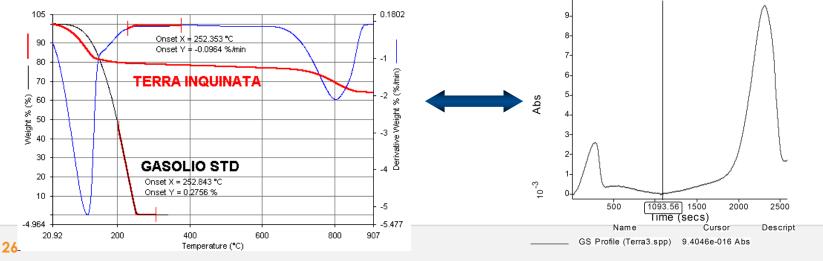
- Why TGA-IR?
 - Two well known techniques that are complimentary
- Thermogravimetric analyser (TGA or STA)
 - TGA 4000, Pyris One, STA 6000
- FTIR
 - Frontier
 - DTGS detector is usually used
 - An MCT detector could be used for low detection limits
- Transfer line
 - TL-8000
 - Easy to setup
 - Rugged
- Software
 - Timebase
 - Triggered by Pyris (thermal analysis software)
 - Kinetic software




TL-8000

- Unique Features
 - Developed for PerkinElmer instruments
 - Easy to setup
 - Plug and Play (TGA and IR)
 - Auto recognition
 - No alignment required
 - Pulling gases with a small vacuum
 - Mass flow controller keep the flow constant
 - Other are trying to push gases thru the small capillary tube...
 - Highest température for transfer line and gas cell
 - Prevent condensation
 - Easier to clean
 - The Zero Gravity-effect (ZG) gas
 - Reduce cell maintenance
 - Self supported transfer line
 - More reliable results

TGA-IR Results



TG-IR Applications Polymers and Rubbers

- TG-IR
 - Study of polymer (or blend) degradation
 - Weight loss on TGA
 - Analysis of evolved gas on IR
 - Comparison of both technique give extra information
 - Study of material safety and toxicity
 - To know if there is any toxic gases evolving when the material is heated
 - Polymer identification
 - When it is too hard to do it with only FTIR

TG-IR Applications Environmental

- Main application
 - Identification of decomposition product
 - Identification of contaminant
- Example
 - A soil sample might have been contaminated by diesel fuel.
 - Had to find if the sample was polluted and identify the contaminant.
- Experimental
 - Sample: About 30 mg
 - Heating rate: 20°C/min
 - Reference: Diesel fuel
 - Sample preparation: NONE!!

PerkinElmer

TGA-IR vs TGA-MS

TGA-IR

- Advantages
 - Functional group analysis
 - Vapor phase libraries
 - Allows of structural isomers
 - Real time analysis
 - Qualitative
 - Non-destructive on vapor
 - Lower cost
- Disadvantages
 - Lower sensitivity
 - Difficulties in mixture analysis

TGA-MS

- Advantages
 - Fast analysis times
 - High sensitivity
 - Widely applicable
 - Real time analysis

- Disadvantages
 - More Expensive
 - Limited libraries
 - Could be complex interpretation

TGA-MS TGA 8000/Pyris 1 – SQ8

- TGA8000/Pyris 1 TGA
 - SQ8
 - SMART source
 - TL-8500
 - Headspace transfer line
 - Up to 1200 amu
 - Oxygen resistant filament
 - Capillaries of various diameter
 - Soft or chemical ionization
- The only TGA-MS with a unique manufacturer!
- Upgradable to TGA-GCMS!

TG-MS Applications Polymers – Analysis of Ethylene Vinyl Acetate

• TG-MS

- Study of polymer (or blend) degradation
 - Weight loss on TGA
 - Analysis of evolved gas on SQ8 MS
 - Comparison of both technique give extra information
- Study of material safety and toxicity
 - To know if there is any toxic gases evolving when the material is heated
- Polymer identification
 - When it is too hard to do it with only FTIR

TGA-MS vs TGA-GCMS

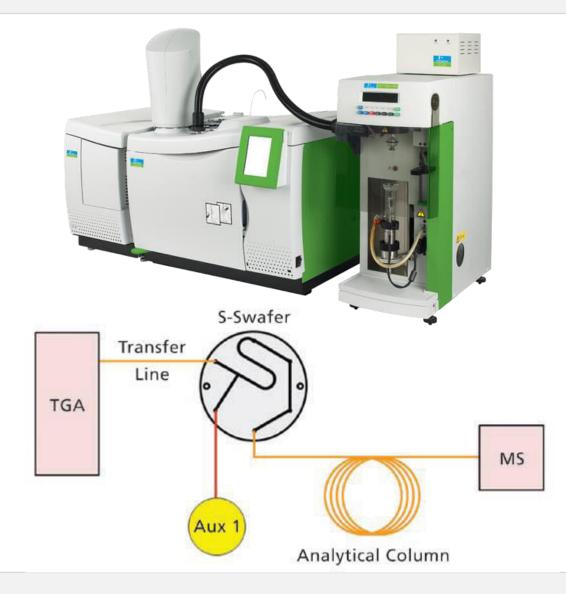
TGA-MS

- Advantages
 - Fast analysis times
 - High sensitivity
 - Widely applicable
 - Real time analysis
 - Quantitative
 - Qualitative

TGA-GCMS

- Advantages
 - Resolves overlapping events
 - Can use GC libraries
 - Quantitative
 - Qualitative
 - Can use alternative detectors
 - Can use GC techniques to improve separation
- Disadvantages
 - Not Real Time Analysis
 - More Expensive

- Disadvantages
 - Could be a real mess!


TGA-GCMS TGA8000/P1 TGA – TG-TL-8500-GCMS

- Use PerkinElmer Clarus 600 GCMS
 - Can still do GCMS inside instrument
 - Limited to trapped species so not real time

The best way to detect and indentify small amounts of materials evolved from the TGA.

TGA-GCMS Swafer makes things easier!

TGA-IR-GCMS

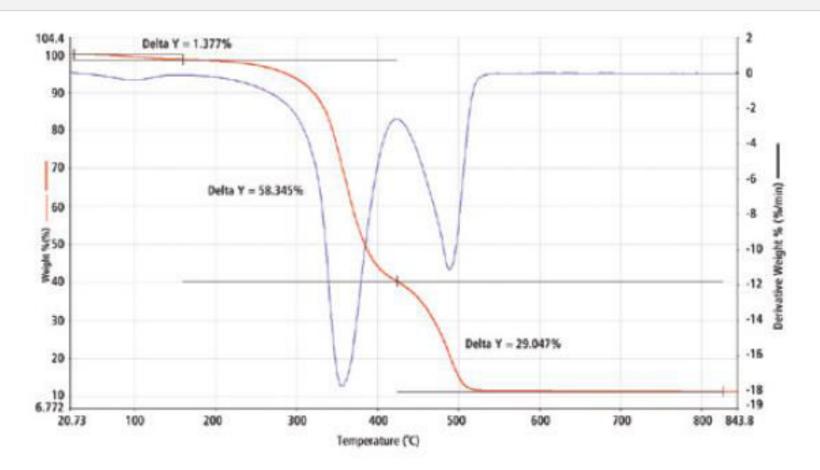
TGA-IR-GCMS TGA-GCMS vs TGA-IR-GCMS

TGA-GCMS

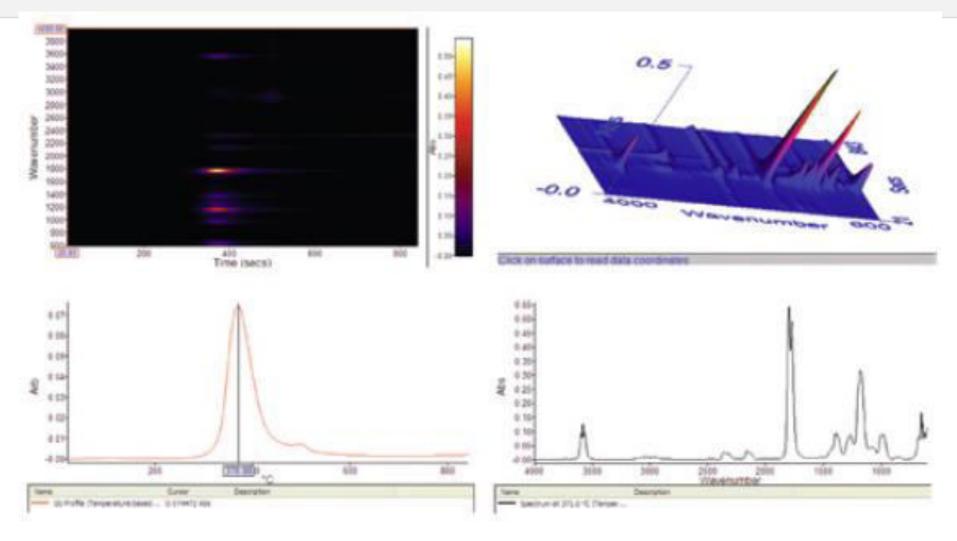
- Advantages
 - Resolves overlapping events
 - Can use GC libraries
 - Quantitative
 - Qualitative
 - Can use alternative detectors
 - Can use GC techniques to improve separation
- Disadvantages
 - No real time analysis

TGA-IR-GCMS

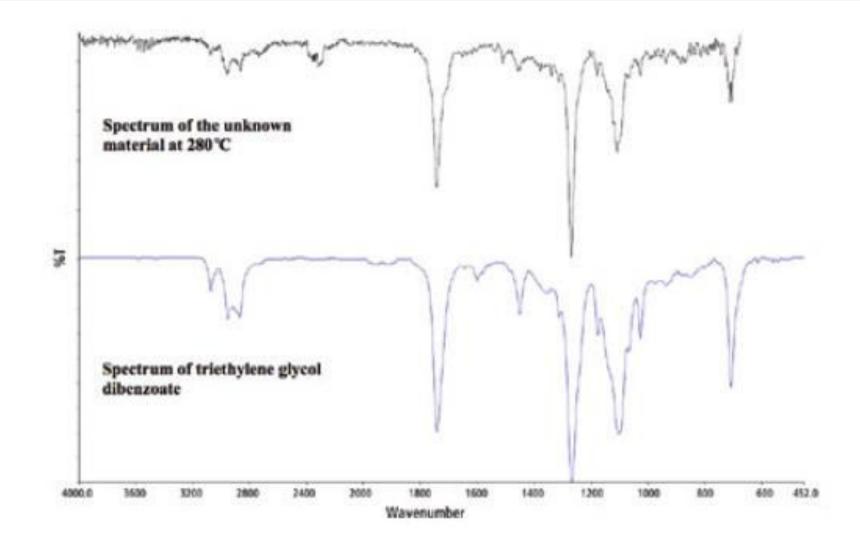
- Advantages
 - Combination of IR and GCMS without the need to split the gas.
 - Resolves overlapping events
 - Can use GC libraries
 - Quantitative
 - Qualitative
 - Can use alternative detectors
 - Can use GC techniques to improve separation
 - Can do TGA-IR-MS if real time needed!!
- Disadvantages
 - More Expensive

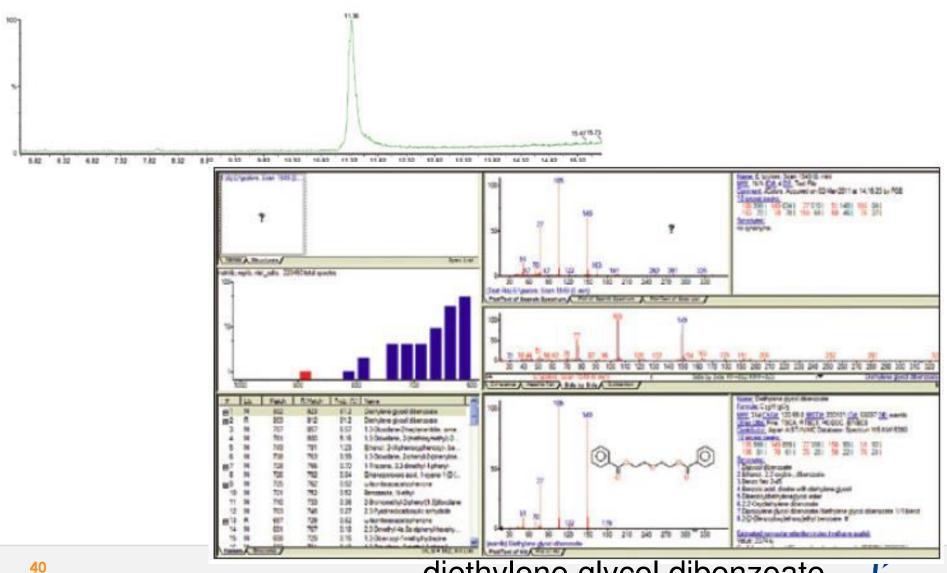

TGA-IR-GCMS TL-9000

- One analysis with three different techniques
 - Results confirmation
- In-line analysis
 - No gas splitting \rightarrow better signal
- Best detection with TGA-IR-GCMS and best real-time measurement with TGA-IR-MS
 - Get everything you need with one system
- Highest temperature transfer line.
 - Prevent any condensation \rightarrow don't miss anything
- Self supported transfer line (like TL-8000)
 - Increase results reliability

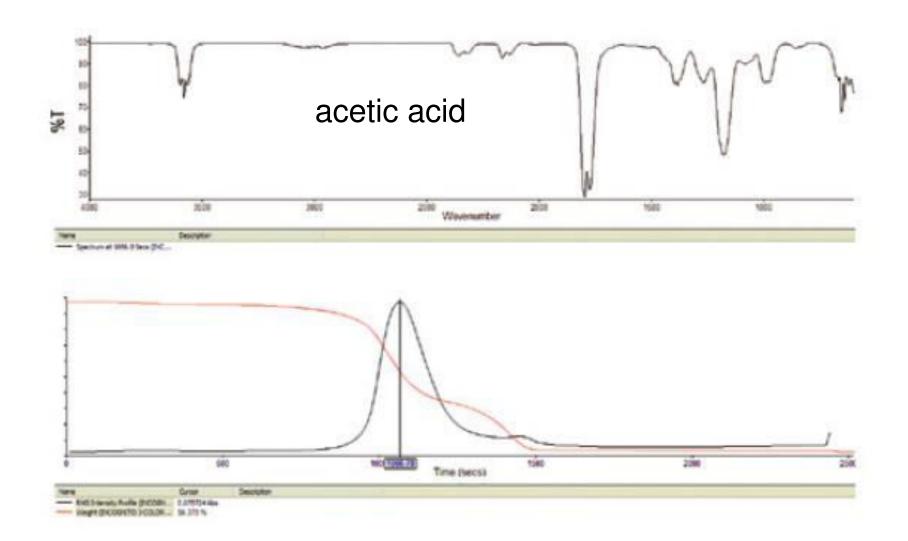

TGA-IR-GCMS Applications Analysis of Ethylene Vinyl Acetate

- TGA-IR-GCMS
 - A laboratory often must analyse an unknown mixture to determine the primary components and identify additives or contaminants. This information may be needed, for example, to evaluate a competitor's product or to determine compliance with regulations.
 - TGA, FTIR and GCMS are well known technique for material identification
 - Combining them can give extra information
- Example
 - An analytical lab has received a pigmented aqueous sample for analysis.
 - A complex extraction is usually needed to identify these type of analysis
 - TGA-IR-GCMS removes most of these sample preparation.


TGA-IR-GCMS Applications TGA Result


TGA-IR-GCMS Applications IR Results

TGA-IR-GCMS Applications IR Results @ 380C


TGA-IR-GCMS Applications GCMS Results @ 280C

diethylene glycol dibenzoate

PerkinElmer

TGA-IR-GCMS Applications IR Results @ 480C

Hyphenation It is not only about the results...!

- PerkinElmer is the only company who can provide a complete solution
 - Thermal Analysis (DSC, TGA, STA, DMA)
 - Molecular spectroscopy (FTIR)
 - Chromatography (GC, GCMS, MS)
- We are the only company who understand every techniques
 - It is easy to get results, not that easy to make sense of them...!
- What about the others?
 - Who takes ownership of the whole system?
 - Who the customers have to call if they have questions?
 - What if something goes wrong with the hyphenated system?

We have THE ONLY Hyphenation Solution – all instruments from ONE Supplier

GC-ICP-MS

PerkinElmer

Your Complete Source For Hyphenated Solutions

TG/DTA-IR

HIDEN ANALYTICAL™ MS SYSTEM FOR TG-MS

