Soil Vapor and Air analysis : Extend the Hydrocarbon Range with Novel ATD tube Design

Karima BAUDIN Oct 2015

JOIN THE CONVERSATION PERKINELMER INTOURS 2015

- > 1980 introduced first Automated Thermal Desorber
- > 1990 introduced Automated Thermal Desorber 400
 - Portable
 - Ease of use
 - Remote control software
- > 2000 introduced TurboMatrix (TMX) 50 and TMX 1
 - TMX-1 dedicated system for online sampling
 - TMX-50 automated tube sampler
 - Touch Screen GUI for ease of use
 - Minimizing plumbing
 - Ease of maintenance
- > 2005 introduced family of five TurboMatrix Thermal Desorbers
 - Many improvements and features for air monitoring

> Environmental (Air Toxics)

- Soil Gas (soil vapor intrusion)
- Indoor (VDA 278, ISO 16000.....)
- Outdoor air (Ait Toxic EPA Method TO-15 (VOA) and TO-13 (SVOA), Ozone precursor......)
- Fence line monitoring
- Stack monitoring
- Manufactured Gas Plants (MGP) sites

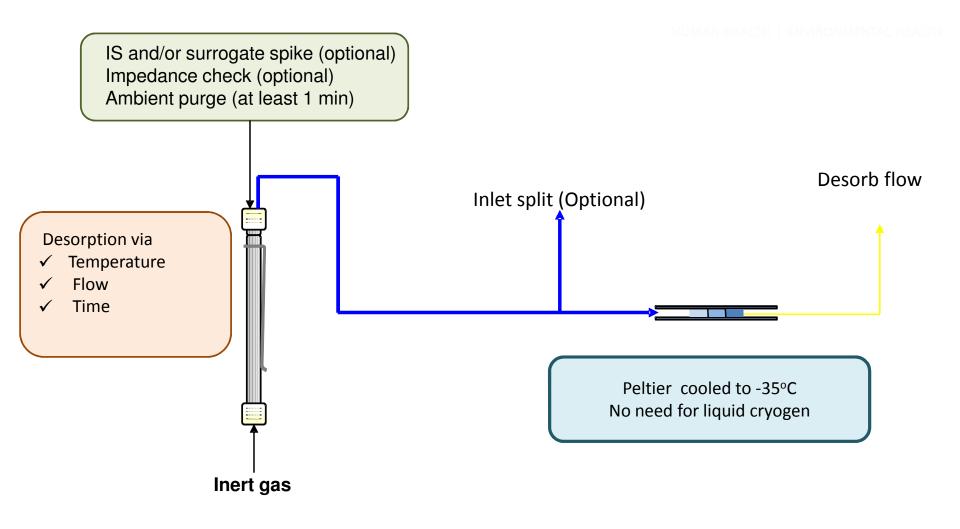
Innovations : Relevant to Air Analysis!

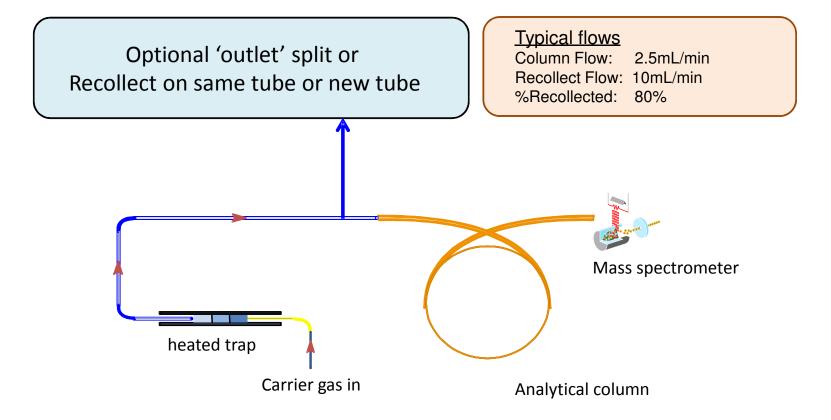
- Electronic control of all flows
 - Programmed flow, velocity or pressure
 - Enables consistent RT precision
- Automates spiking internal standard as a gas onto each tube
- Automates spiking a surrogate prior to sending tubes out for sampling
- Automates sample tube and cold trap impedance check to validate trap and tube
- Automates sample recollection confirmatory analysis through sample recollection on the same or new tube
- > Automates tube conditioning during analysis
- Automates leak check of tube and trap prior to each analysis
- Excellent water management

...ease of use, accurate, precise

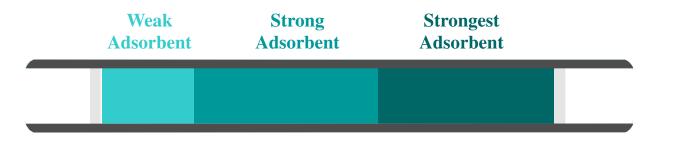
HUMAN HEALTH | ENVIRONMENTAL HEALTH

Advantages of Tubes Operation of ATD Sorbent Tube Recipe

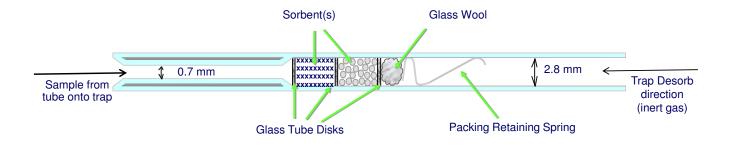

Advantages of Tube Sampling



- Established methodology
- Convenient and less expensive to transport
- Easy to clean, immediate reuse means fast turnaround
- Cost effective
- Larger sample volumes
- Suitable for non-polar and polar compounds
- Inherent Water Management
- Enables Recollection to preserve sample
- Enhances recovery of high boilers extends analyte list
- > Completely Automated



Multiple Adsorbents: accommodate wide boiling point analyte range

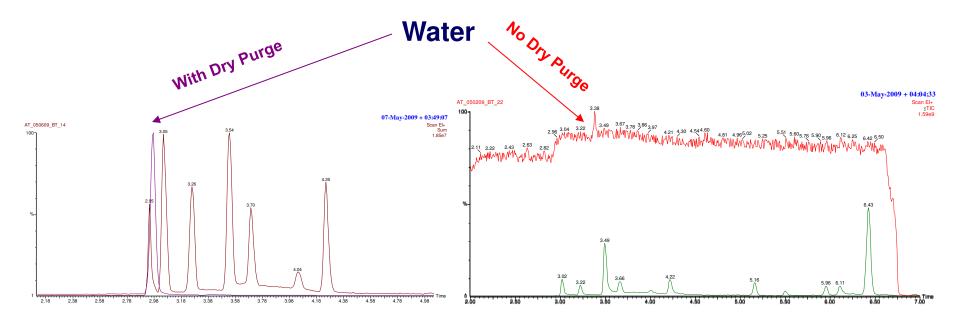


Sample the tube in the direction of weak adsorbent to strong adsorbent

———— Desorb the tube in the direction of strong adsorbent to weak adsorbent

- Reduced diameter outlet reduces analyte dispersion or band broadening for narrower, focused peaks
- Trap flow is reversed during desorption to enhance efficiency and ensure recovery of high boiling compounds

Water Management



- > Nafion Drier / Desiccants
 - Polar Compounds Removed Cannot be used for Air Toxics (TO-15/TO-17 Component list)
- > Hydrophobic adsorbents
- Minimize sampling volumes while maintaining regulated detection limits
- > Dry Purging!
 - Time depends upon sample humidity
 - 1 minute to rid tube of oxygen

Why Remove Moisture?

- Mass Spectrometer
 - Signal quenching
 - Increased maintenance
- Chromatography
 - Can effect peak shapes

Enhanced Tube Design for Soil Gas (Soil Vapor Intrusion) and Ambient Air Monitoring

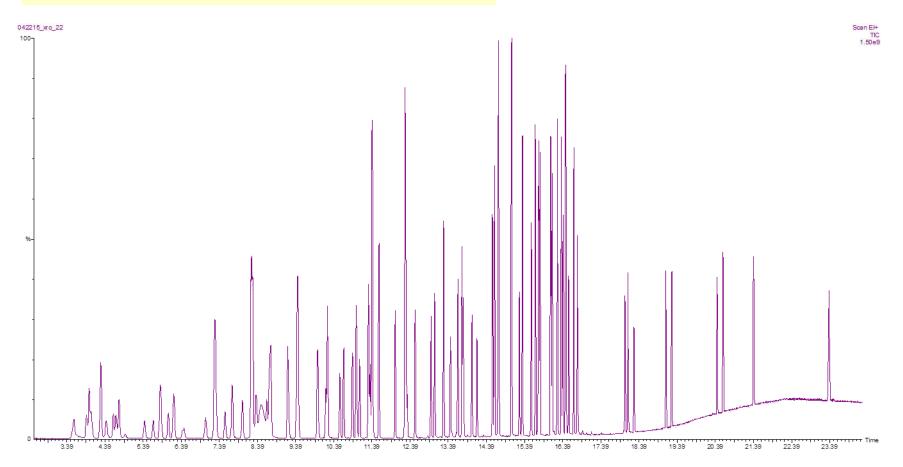
Soil Vapor Intrusion[™] Tubes

- Soil vapor intrusion occurs when toxic compounds that are present in the air space in soil of a contaminated location have pathways of entering a building, potentially creating a health risk
- These toxic vapors typically occurred because of a contaminated water and/or soil source

> Soil vapor differs from other air sampling applications

- Higher moisture
- Greater analyte range
- Wider concentration range

- Broad Compound Boiling Point Range
 - dichlorodifluoromethane to phenanthrene plus
 - nC3 nC26
- Protects the strong adsorbents
 - Prevents irreversible adsorption
 - Clean after one desorption cycle
- Excellent recoveries of high boilers


Total Ion Chromatogram

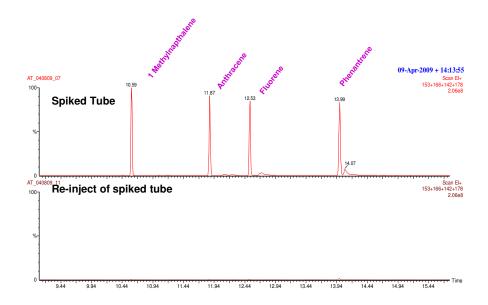
Mass Range: 35 to 300 AMU

Conc: 4ng on Column

Broad Boiling Point Range: Chloromethane to Naphthalene

1 Liter sample volume

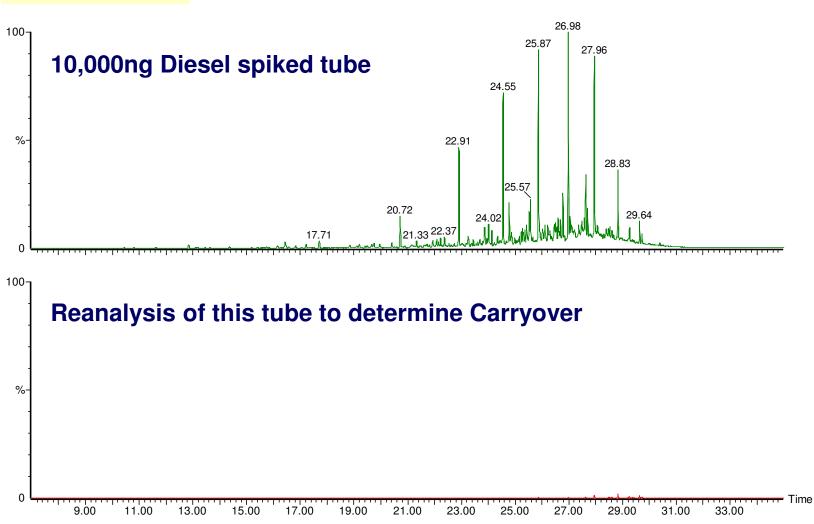
Class of compound	# of analytes	Linearity (0.05 to 250 μ g/m ³)*		Precision	Reporting Limit
	per group	r ²	Ave RF	(n=10)	S/N at 0.05 μg/m ³)
Gases	7	0.9994	9.07	7.39	530:1
Aliphatic Hydrocarbons (halogenated)	35	0.9996	14.00	4.80	560:1
Aromatics (halogenated)	9	0.9997	13.30	2.58	1350:1
Aromatics (non-halogenated)	14	0.9996	10.27	1.91	1220:1
Polynuclear Aromatic Hydrocarbons (PAHs)	5	0.9997	8.69	3.56	570:1
others	13	0.9996	9.26	3.19	560:1


... better than method criteria

Recovery procedure

- Analyzed spiked tube
- Analyzed blank tube
- Re-analyzed spiked tube which should be clean

PAH Compounds	% Recovery		
1-Methyl Napthalene	99.7		
Anthracene	99.8		
Fluorene	99.4		
Phenanthrene	98.8		


- Non-detectable carryover
 - Insignificant carryover of 4 heaviest PAHs
 - Significantly below method criterion

Recovery Results EXCELLENT (Diesel at 10ug)

PerkinElmer[•] For the Better

Carryover <1%

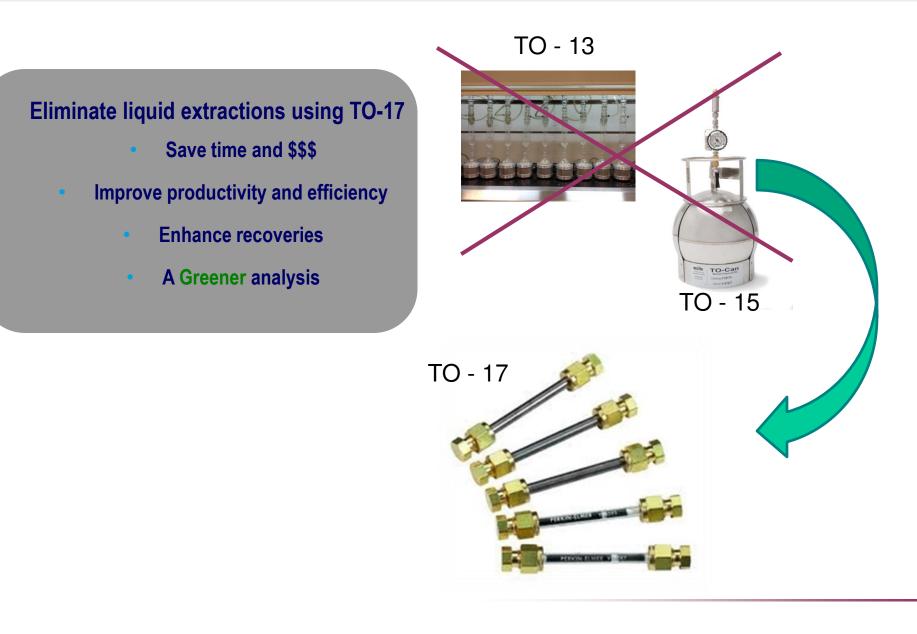
Single Tube Sampling: Analysis of Volatile and Semi-Volatile Organics in Air.

The Cost Effective

Green Solution

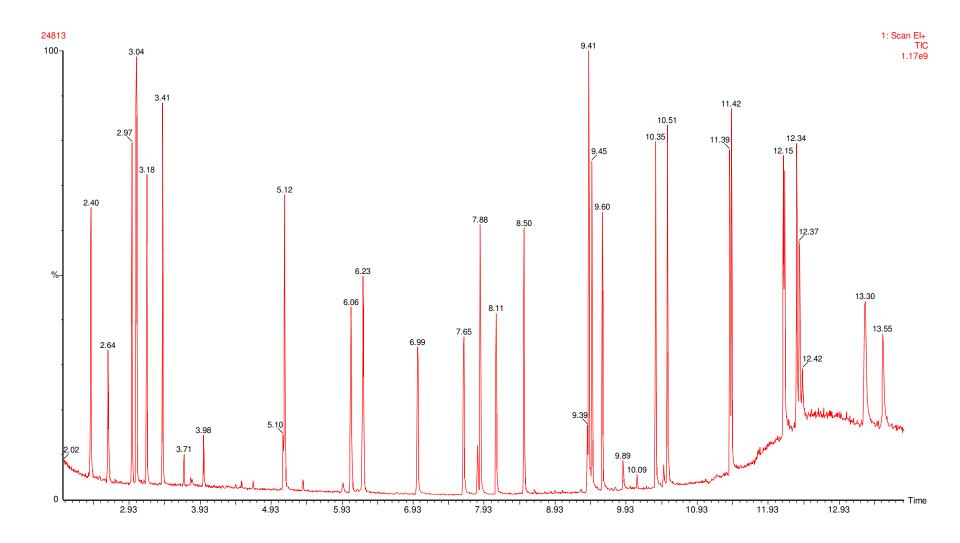
- > 2010: Soil Vapor Intrusion (SVI) Tube (patented)
 - (C₃ to C₂₆)
 - Combines VOC & SVOC from the seven VOA gases to pyrene
- 2011: XRO-644 (patent pending)
 - (C₆ to C₄₄)
 - Residue in Liquefied Petroleum Gas (LPG)
 - Combines VOC & SVOC from BTEX to benzo(g,h,i)perylene
- 2013: XRO–444 (patent pending)
 - (C₄ to C₄₄)
 - Combines VOC & SVOC from 1,3-butadiene to benzo(g,h,i)perylene

PM10 (particulates)



TO-15 (VOCs)

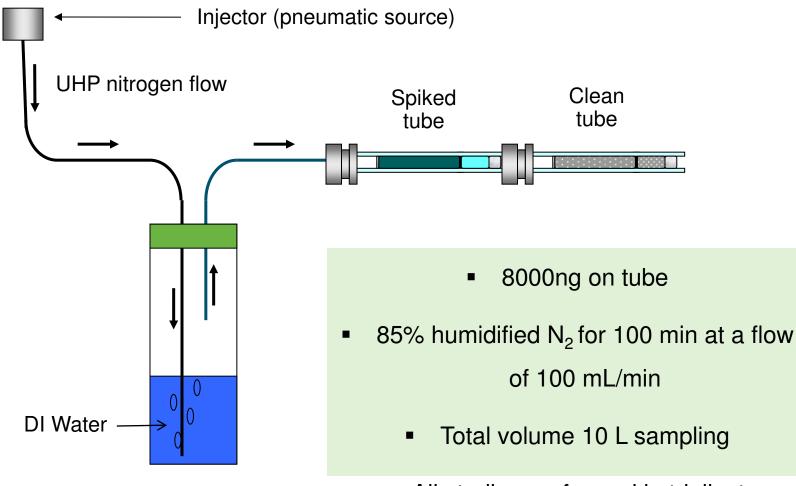
TO-13 (PAHs)



	Volatiles	Semi-volatiles
	1,3-Butadiene	Napthalene
	Benzene	2-Methylnapthalene
	Toluene	1-Methylnapthalene
	Ethyl Benzene	Acenaphthylene
	Xylenes	Acenaphthene
		Fluorene
		Phenathrene
		Acenapthene
		Fluoranthene
Example Tube		Pyrene
		Benzo(a)anthracene
weak m	d strong	Chrysene
Sample	Carri	Benzo(b)fluoranthene
Stream	Deso	Benzo(k)fluoranthene
		Benzo(e)pyrene
		Benzo(a)pyrene
		Indeno(1,2,3-c,d)pyrene
		Dibenz(a,h)anthracene
		Benzo(g,h,i)perylene

... Started with these targets for MGP sites

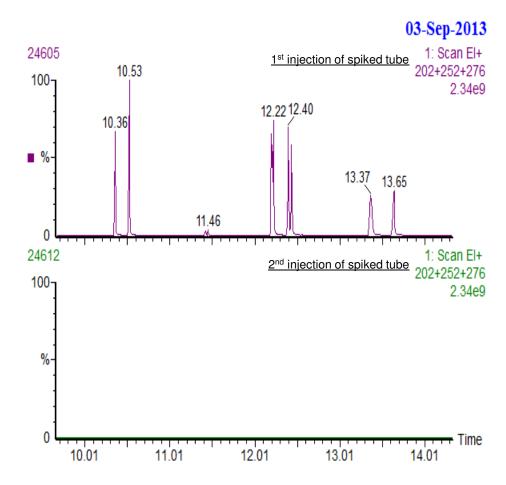
Total Ion Chromatogram (TIC)



Target Compount	Range 0.2 to 50ng	Reporting Limit (ug/m ³) 45L sample volume	Precision (%RSD) n=6
1,3-Butadiene	0.9961	0.0111*	1.89
Benzene	0.9971	0.0044	0.90
Toluene	0.9991	0.0044	0.94
Ethyl Benzene	0.9989	0.0044	0.77
m & p - Xylenes	15.54%	0.0044	0.95
o - Xylene	0.9994	0.0044	1.57
Naphthalene	25.07%	0.0044	0.92
2-Methylnaphthalene	11.79%	0.0044	1.69
1-Methylnaphthalene	19.05%	0.0044	0.65
Acenaphthylene	11.32%	0.0044	1.87
Acenaphthene	14.40%	0.0044	1.48
Fluorene	20.96%	0.0044	2.27
Phenanthrene	8.13%	0.0044	1.67
Anthracene	15.54%	0.0044	2.27
Fluroanthene	7.23%	0.0044	1.41
Pyrene	22.44%	0.0044	1.24
Benzo[a]anthracene	18.93%	0.0044	2.04
Chrysene	19.21%	0.0044	1.92
Benzo[b&k]fluoranthene	16.21%	0.0044	5.96
Benzo[e]pyrene	16.61%	0.0044	0.80
Benzo[a]pyrene	10.86%	0.0044	0.99
Indeno[1,2,3-c,d]pyrene	20.28%	0.0044	1.78
Dibenz[a,h]anthracene	0.9951	0.0044	1.21
Benzo[g,h,i]perylene	0.9952	0.0044	1.97

- Occurs when target compounds are not adsorbed by adsorbents
- EPA TO-17 definition: "The volume sampled when the amount of analyte collected in a back-up sorbent tube reaches a certain percentage (typically 5%) of the total amount collected by both sorbent tubes"

All studies performed in triplicate

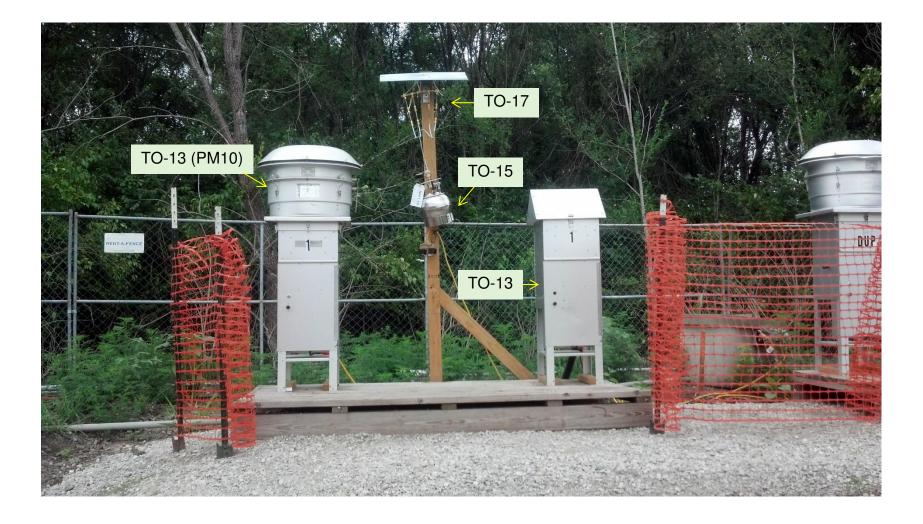

- A primary TD tube was attached to a gaseous standard to continuously deliver target compounds (mimics a real-world sampling event)
- A BT tube was attached and monitored on a regular basis
- Ultimately, the primary tube was loaded with >200mg analyte with no detectable breakthrough

Target Analyte	% BT	% BT	% BT
1,3-Butadiene	nd	nd	nd
Benzene	nd	nd	nd
Toluene	nd	nd	nd
Ethyl Benzene	nd	nd	nd
m & p - Xylenes	nd	nd	nd
o - Xylene	nd	nd	nd
Naphthalene	nd	nd	nd
2-Methylnaphthalene	nd	nd	nd
1-Methylnaphthalene	nd	nd	nd
Acenaphthylene	nd	nd	nd
Acenaphthene	nd	nd	nd
Fluorene	nd	nd	nd
Phenanthrene	nd	nd	nd
Anthracene	nd	nd	nd
Fluroanthene	nd	nd	nd
Pyrene	nd	nd	nd
Benzo[a]anthracene	nd	nd	nd
Chrysene	nd	nd	nd
Benzo[b&k]fluoranthene	nd	nd	nd
Benzo[e]pyrene	nd	nd	nd
Benzo[a]pyrene	nd	nd	nd
Indeno[1,2,3-c,d]pyrene	nd	nd	nd
Dibenz[a,h]anthracene	nd	nd	nd
Benzo[g,h,i]perylene	nd	nd	nd

Carryover and Recovery

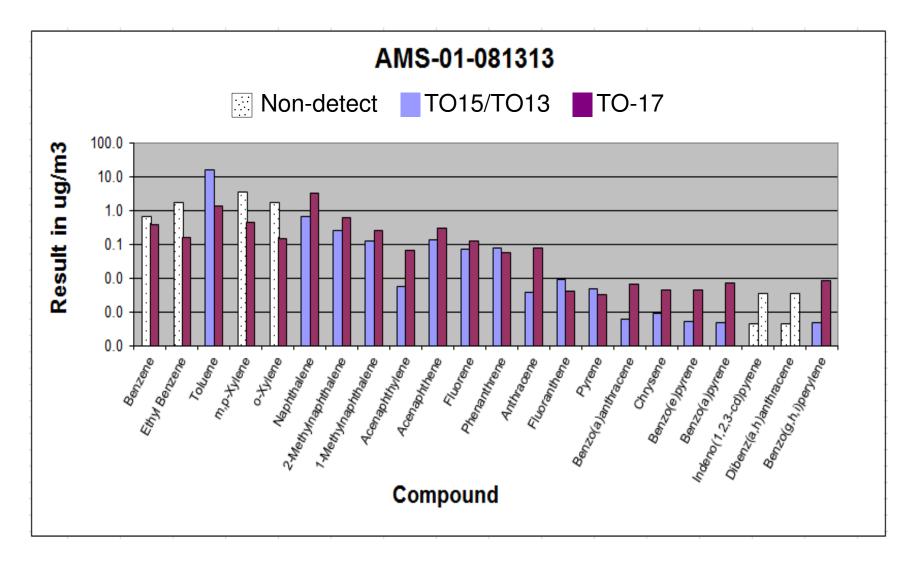
- Recovery/Carryover Experiments
 - Analyzed spiked tube (50ng)
 - Analyzed trap
 - Analyzed valve
 - Re-analyzed spiked tube

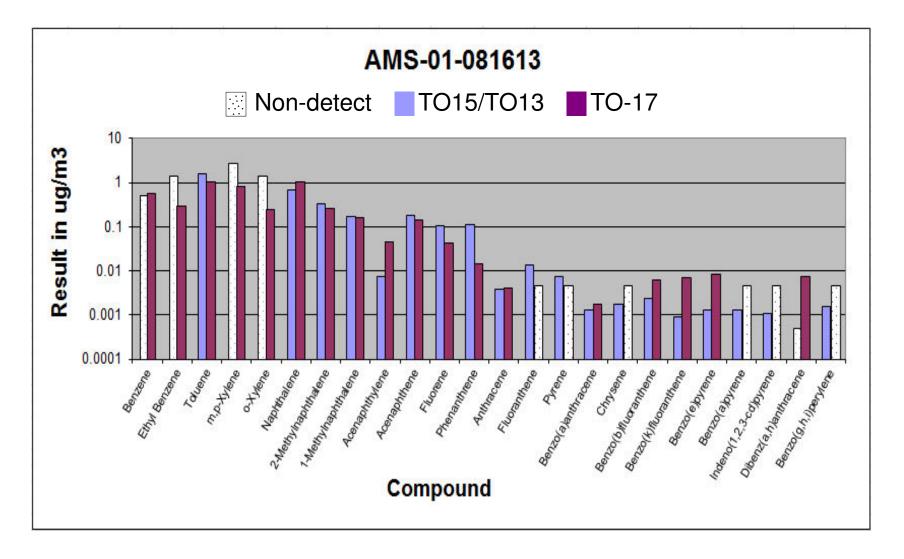
Target Analyte	Trap Test	Tube Test	Valve Test
Benzene	nd	nd	nd
Toluene	nd	nd	nd
Ethylbenzene	nd	nd	nd
m&p-Xylene	nd	nd	nd
o-Xylene	nd	nd	nd
Naphthalene	nd	nd	nd
2-Methylnaphthalene	nd	nd	nd
Acenaphthylene	nd	nd	nd
Acenaphthene	nd	nd	nd
Fluorene	nd	nd	nd
Phenanthrene	nd	nd	nd
Fluoranthene	nd	nd	nd
Chrysene	nd	nd	nd
Benzo[a]pyrene	nd	nd	nd
Indeno[1,2,3-cd]pyrene	nd	nd	nd
Benzo[g,h,i]perylene	nd	nd	nd

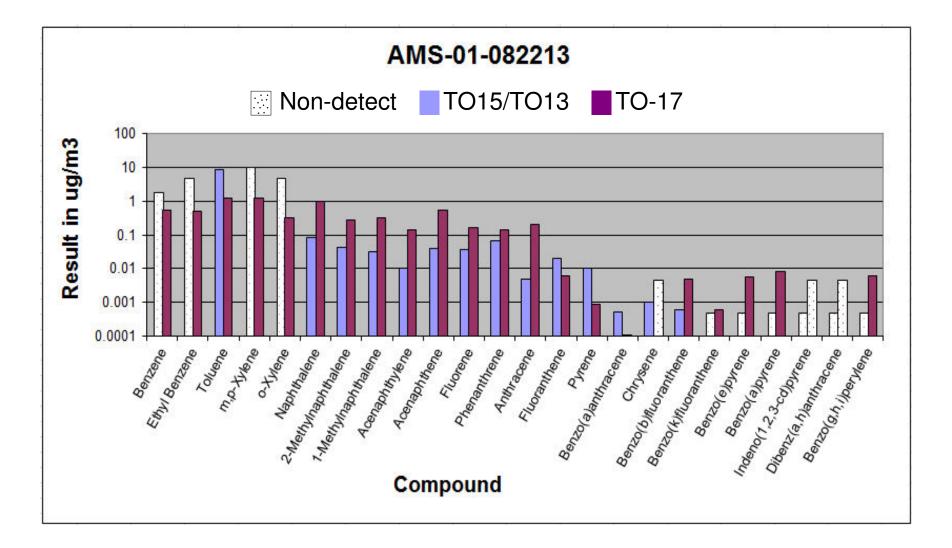


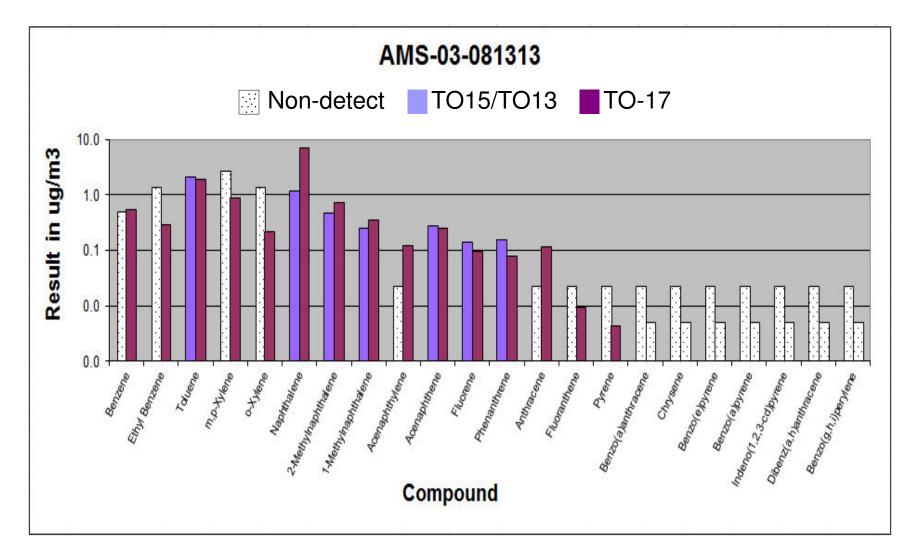
- Compare TO-13 / TO-15 to TO-17: results from an active MGP remediation site
- 72-hour sample collection
- Continuous sampling for six weeks
- Two sample locations selected (AMS-01 and AMS-03)
- Three 72-hour samples from each site were selected for comparison

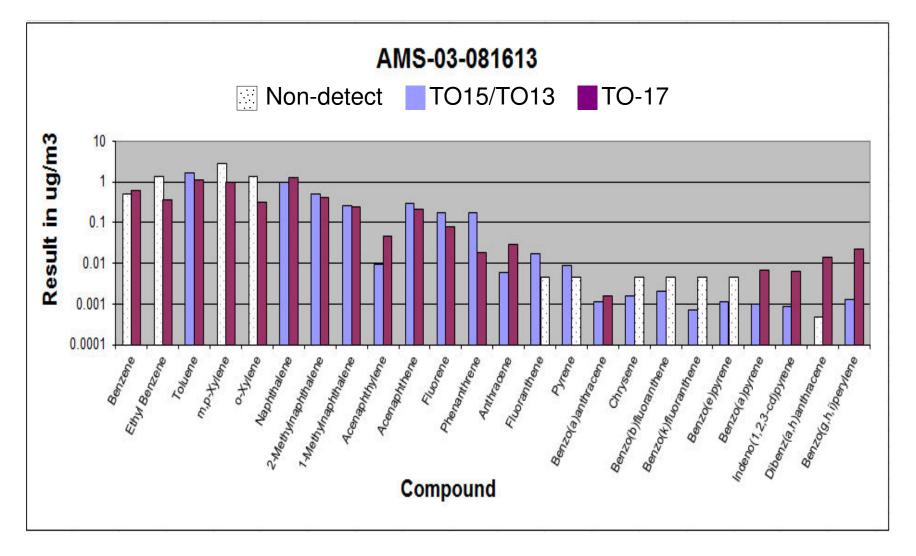
Site Setup

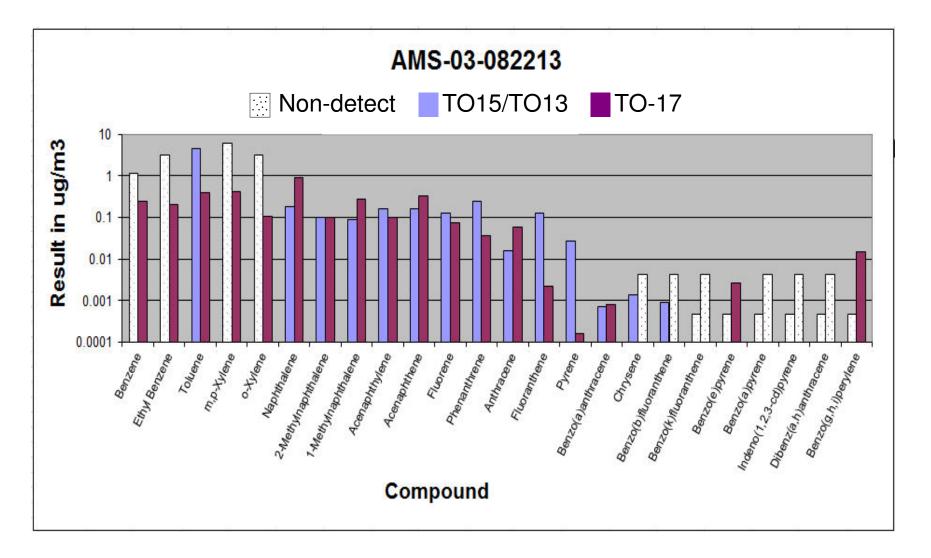

TO-17 Site Study expanded view


- Two types of tubes investigated (XRO-444 and XRO-644)
- Each type was sampled in duplicate
- One of the duplicates had filter attached and analyzed


 A breakthrough tube was attached to every tube sampled







EPA Method TO-17 is performance-based, guidance method

- Section 2.5 states: "...This method provides performance criteria to demonstrate acceptable performance of the method (or modifications of the <u>method</u>) for monitoring a compound or set of compounds."
- EPA has seen this data and has given verbal acceptance stating that TO-17 is performance based so targets may be included as long as criteria is met
 - U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Ambient Air Monitoring Group C304-06 Research Triangle Park, NC 27711

Summary

- Analytical performance proves concept
- Site data suggests this is a better alternative
- One analysis instead of two:
 - Reduce sampling and analytical costs and disposal
 - Save on shipping and labor costs
 - Enhance productivity and efficiency
 - Increase profits
 - Better for our environment ... A Greener analysis
- More data is available

Summary

- Thermal Desorption Technology
 - Tubes well-suited for vapor intrusion investigations and Air Toxic applications
 - Instrumentation Advancements \rightarrow Analytical Integrity

Team developed new Thermal Desorption Tube that Achieves

- Broad Component Range
- Protection of Strong Adsorbents
- Excellent recoveries of high boilers
- Excellent Safe Sampling Volumes
- Optimal Water Management

PerkinElmer TurboMatrix 650 Thermal Desorber / SQ 8 GC/MS ...

... Air Toxic Analyzer

Special thanks to : Lee Marotta, Sr Field Application Scientist, PerkinElmer Miles Snow, Research Scientist, PerkinElmer Tom Kwoka, Sr Product Specialist, PerkinElmer Stephen Varisco, CARO Analytical Laboratories Roberta Provost, Air Method Development Specialist Pace Analytical Services Thank you