

Sciex X500R a new Screening Platform for Food, Environmental & Forensic Analysis

Alexandre Paccou Sr Manager, Support, EMEA

For Research Use Only. Not for use in diagnostic procedures.

RUO-MKT-11-3046-A

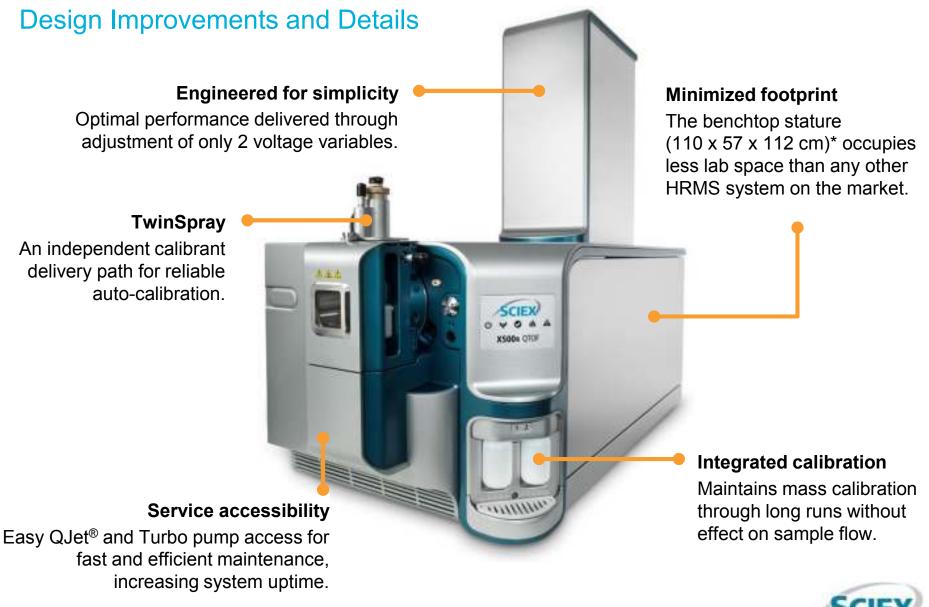
What's New?

SCIEX X500R QTOF System powered by SCIEX OS Software

SCIEX X500R QTOF system

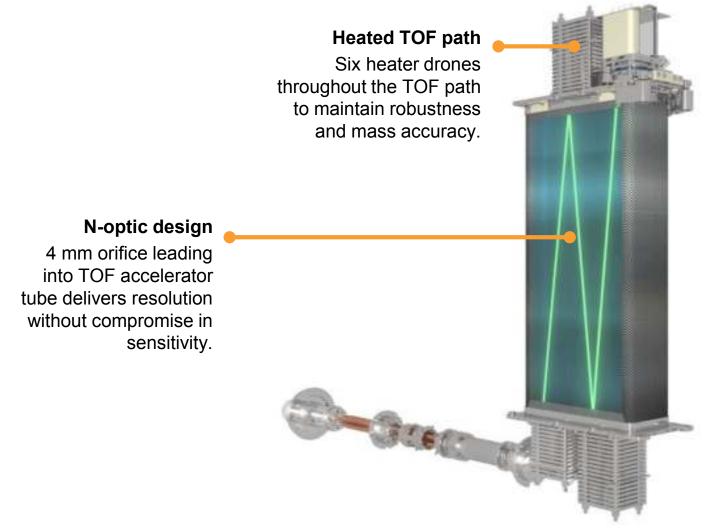
SCIEX ExionLC[™] AC system

SCIEX OS software


Outline

- Hardware
 - SCIEX ExionLC[™] Systems
 - Fully controlled by SCIEX OS software
 - Improved software integration for better stability
 - SCIEX X500R QTOF System
 - N-optic design
 - Heated TOF path
 - Minimized footprint, engineered for simplicity and service accessibility
- Software
 - SCIEX OS Software
 - New user interface
 - Simultaneous identification and quantitation
 - Automatic unknown identification
- Application data
 - Target identification and quantitation
 - Unknown screening

Introducing the SCIEX X500R QTOF System



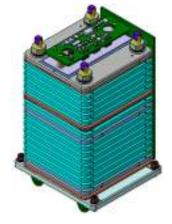
© 2016 AB Sciex RUO-MKT-11-3046-A 4

Introducing the SCIEX X500R QTOF System

Design Improvements and Details

Introducing the SCIEX X500R QTOF System

Design Improvements and Details



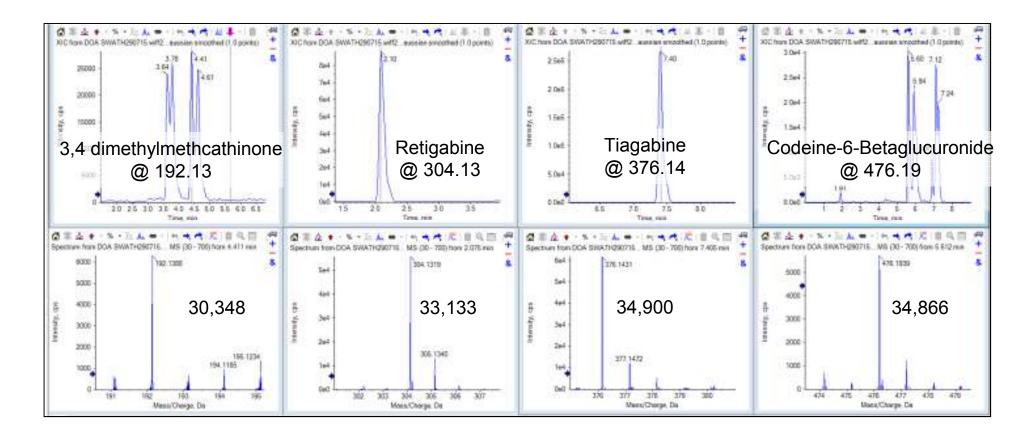
History 5

TOF Details

- Simplified ion transfer optics
- No slits... all ions go in (increased sensitivity)
- Focusing... high resolution without compromise in sensitivity
- Single pulse acceleration (6kV)
- 2 mirrors and direct thermal stabilization

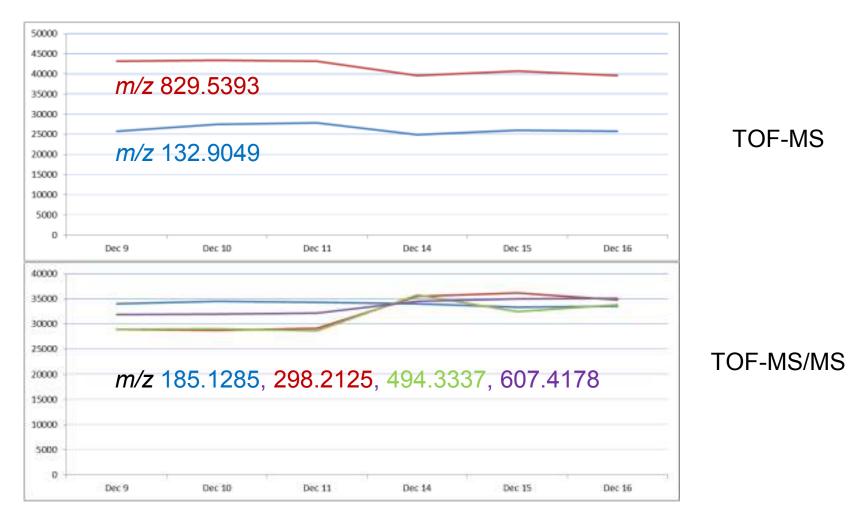
Perfect Balance to Elevate Your Lab's Performance

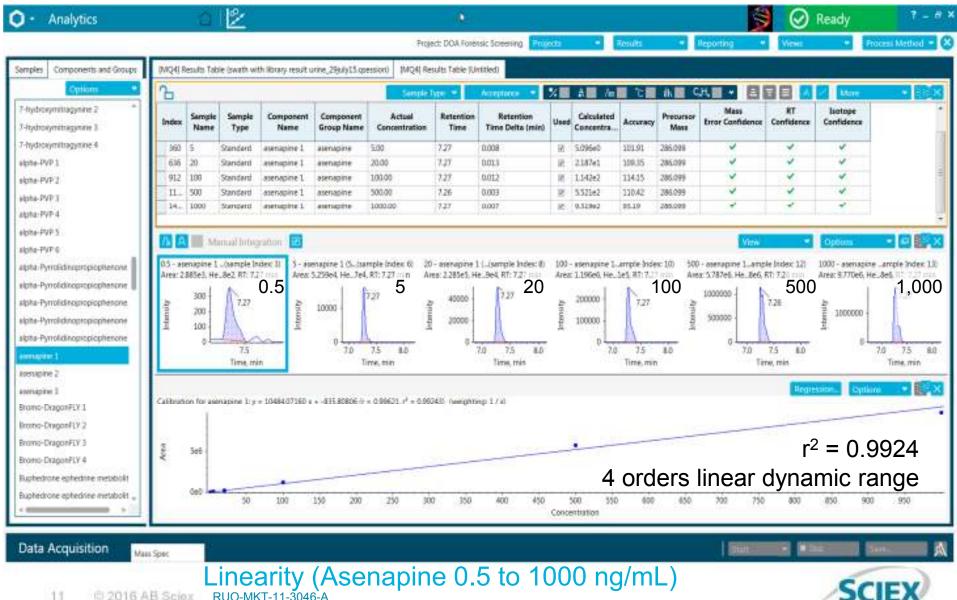
SCIEX X500R QTOF System



- The first robust, high performance high resolution MS/MS system designed for routine use.
 - Sensitivity to easily detect required drug cutoff concentration levels
 - Resolving power to remove interference from complex forensic matrices
 - Linearity to quantify up to 4 orders of magnitude
 - Identify compounds based on mass accuracy
 - Confident identification based MS/MS (IDA, MS/MS^{ALL} with SWATH[™] Acquisition and ion ratios)
 - Industry leading robustness of Turbo V[™] source and Curtain Gas[™] interface

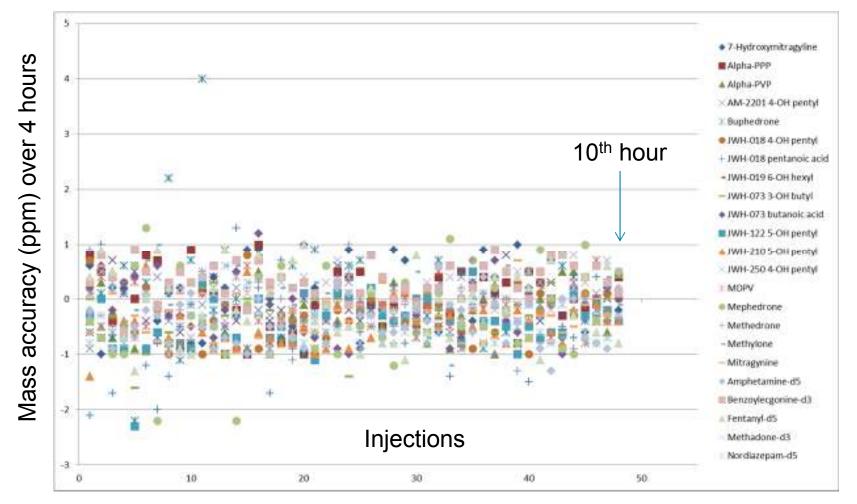
The SCIEX X500R QTOF System


Sensitivity and Resolution (20 ng/mL forensic drugs in urine, 10 µL injected)


Resolution

Resolution from Dec 9 to Dec 16

The SCIEX X500R QTOF System – Linearity

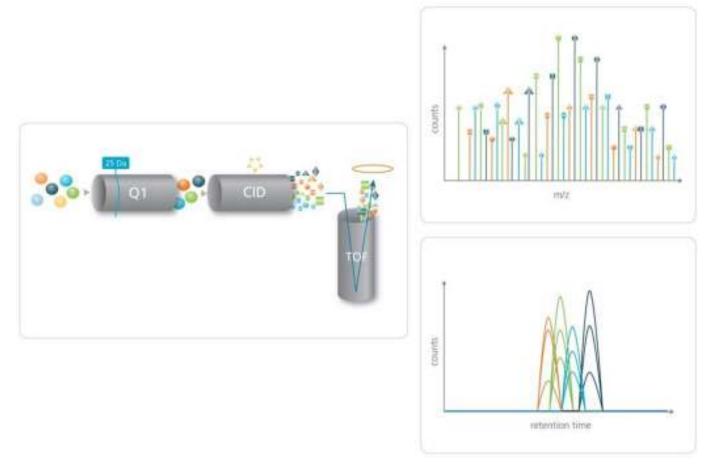


@ 2016 AB Sciex

SCIE)

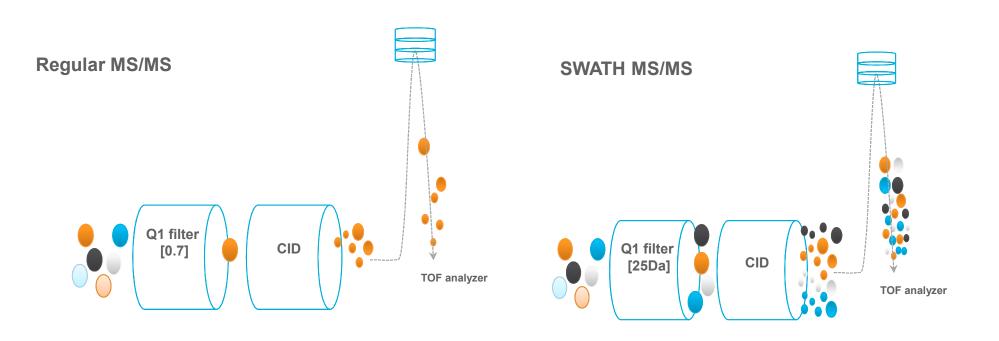
Mass Accuracy in urine samples without autocalibration

ppm in all injections over a 10-hour period (no calibration in between)

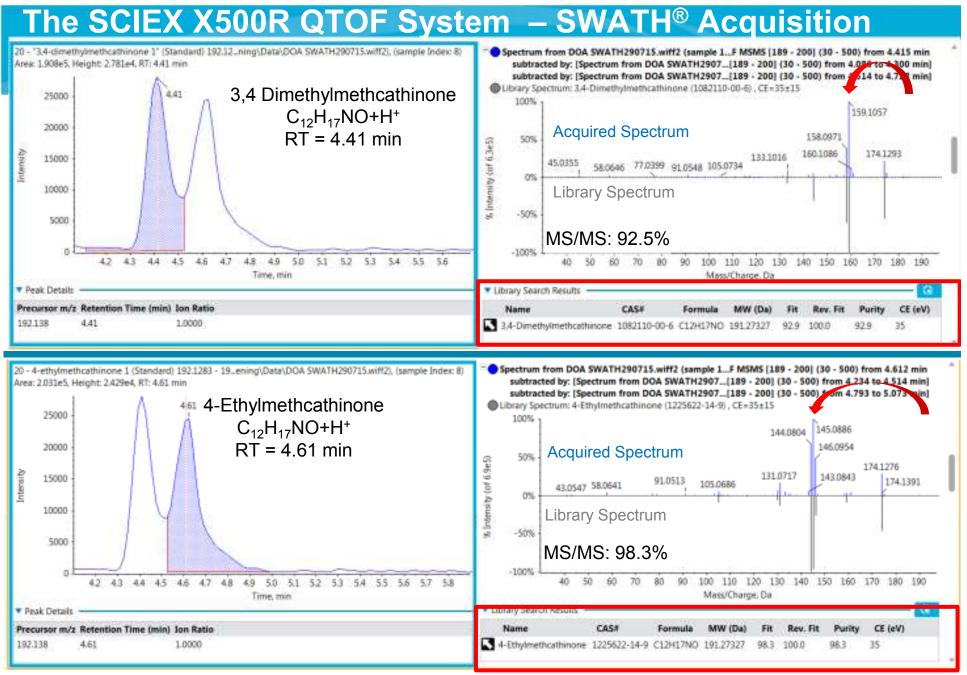

This is a plot for 6 urine samples with same analytes in different concentrations over a 10-hour period without any calibration.

MS/MS^{ALL} using **SWATH[®]** Acquisition

A Mode of Data Independent Acquisition Providing all MS/MS Spectra Wide Q1 Isolation Window is Stepped Across the Mass Range



SWATH® acquisition can be used with variable Q1 isolation windows across the mass range



SWATH® Acquisition

- A mode of Data Independent Acquisition
- Provides MS/MS^{ALL}

© 2016 AB Sciex RUO-MKT-11-3046-A For Research Use Only. Not for use in diagnostic procedures.

15

Acquisition method

SWATH with variable windows, 8 min

TOF sta	art mass 40		Da TOF st	op mass	500	🗘 Da	Dynamic collis	sion energy
Accum	ulation time 0.025	0	s Charg	e state	1			
Mass T	Autofil SWATH	windows						
	Precursor ion start mass (Da) Prec	ursor ion stop mass (D	a) Declustering p	otential (V)	DP spread (V)	Collision energy (V)	CE spread (V
1	120.0000	140	.0000	60		0	35	15
2	139.0000	165	0000	60		0	35	15
3	164.0000	195	0000	60		0	35	15
4	194.0000	205	0000	60		0	35	15
5	204.0000	218	0000	60		0	35	15
6	217.0000	240	0000	60		0	35	15
7	239.0000	258	0000	60		0	35	15
8	257.0000	273	0000	60		0	35	15
9	272.0000	290	0000	60		0	35	15
10	289.0000	304	0000	60		0	35	15
11	303.0000	313	0000	60		0	35	15
12	312.0000	326	0000	60		0	35	15
13	325.0000	333	0000	60		0	35	15
14	332.0000	358	0000	60		0	35	15
15	357.0000	450	0000	60		0	35	15
16	449.0000	500	0000	60		0	35	15

Acquisition method


SWATH with variable windows, 8 min

OF MS	MS									
TOF sta	art mass	40	\$	Da	TOF stop mas	s 500	\$	Da	Dynamic col	lision energy
Accum	ulation time	0.025	0	5	Charge state	1				
Mass T	fable	Autofill SWATH windo	WS.,							
	Precursor i	ion start mass (Da)	Precu	irsor i	ion stop mass (Da) Dee	clustering potential (V) DP spr	ead (V)	ollision energy (V)) CE spread (V)
1	120.0000		140.0	0000	Amphetamine (136)					
2	139.0000		165.0	0000	Methamphetamine (150)					
3	164.0000		195.0	0000	MDA (180)					
4	194.0000		205.0	0000	MDMA (194)	Nortapentadol (204)				
5	204.0000		218.0	0000		Tapentadol (222)				
6	217.0000		240.0	0000	Norketamine (224)					
7	239.0000		258.0	0000	Ketamine (238)	Nortramadol (250)				
8	257.0000		273.0	0000		Tramadol (264)	Novenia	faxine (264	Nordoxepin (266)	Nordiazepam (27
9	272.0000		290.0	0000	Morphine (286)	Norchlordiazepoxide (2	86) Venlatax	ine (278)	Doxepin (280)	Diazepam (285)
10	289.0000		304.0	0000	Codeine (300)	Chlordiazepoxide (300)	Norsertr	aline (292)	Norflucketine (296)	
11	303.0000		313.0	0000	Alprazolam (309)	Norcitalopram (311)	Sertralin	e (306)	Fucxetine (310)	
12	312,0000		326.0	0000	Hydroxyalprazolam (325)	Citalopram (325)	Norcloza	apine (313)	THC (315)	-
13	325.0000		333.0	0000	Norpropoxyphene (326)		Clozapin	e (327)	THC-OH (331)	
14	332.0000		358.0	0000	Propoxyphene (340)	Triazolam (343)				
15	357.0000		450.0	0000	Norbuprenorphine (414)	Hydrotriazolam (359)	Norverap	amil (441)	-	
16	449.0000		500.0	0000	Buprenorphine (468)		Verapan	nil (455)		

The SCIEX X500R QTOF System – MRM^{HR}

Increased selectivity with MRM^{HR}: Avoiding false negatives Feed Sample Tested Positive for NP-Semicarbazide

Acquisition method

Scheduled MRM^{HR}, 8 min, Fragment \pm 10 m/z

MS/MS

235.1262

299.2157

308.18

345.21

TOF MS											
TOF st	art mass	00	Da	Declustering poten	stial 60	:	V	Collision energy	10	\$	v
TOF st	op mass 1	.000	Da	DP spread	0		V	CE spread	0	\$	v
Accum	ulation time	1	sec								
TOF MS	ims										
Mass 1	Table 🧕 Apply	y fragment ion	mass (Apply TOF start/stop ma	ass	Apply Scan Sc	hedule 1	mport and autofil	Sort by precursor ion		
	Compound ID	Precu	irsor i	Fragment ion (Da)	Accumul.	. Declus	Collision	Retention ti	Retention time to	erance	(+/- sec)
1	6-MAM	328.1	5	211.0747	0.0100	60	33	2.04	15		
2	7-Aminoclonazepam	286.0	07	222.1025	0.0100	60	32	2.67	15		
3	7-Hydroxymitragyline	415.2	22	190.0864	0.0100	60	40	2.96	15		
4	Acetyl Fentanyl	323.2	21	105.0700	0.0100	60	48	3.00	15		
5	Alpha-Hydroxyalpraz	olam 325.0	9	297.0665	0.0100	60	31	4.18	15		
6	Alpha-hydroxymidazo	slam 342.0	8	203.0377	0.0100	60	34	4.51	15		
7	Alpha-hydroxytriazola	am 359.0)5	331.0272	0.0100	60	35	3.95	15		
8	Alpha-PPP	204.1	14	105.0699	0.0100	60	35	2.04	15		
9	Alpha-PVP	232.1	17	161.0963	0.0100	60	20	2.61	15		
10	Alprazolam	309.0	9	281.0730	0.0100	60	35	4.49	15		
11	AM-2201 4-OH penty	1 376.1	7	155.0492	0.0100	60	35	6.07	15		
12	Amitriptyline	278.1	9	117.0702	0.0100	60	31	4,53	15		
		Prec	ursor	+/- 10	100 H	z		RT	RT half win	dow	

0.0100

0.0100

60

60

45

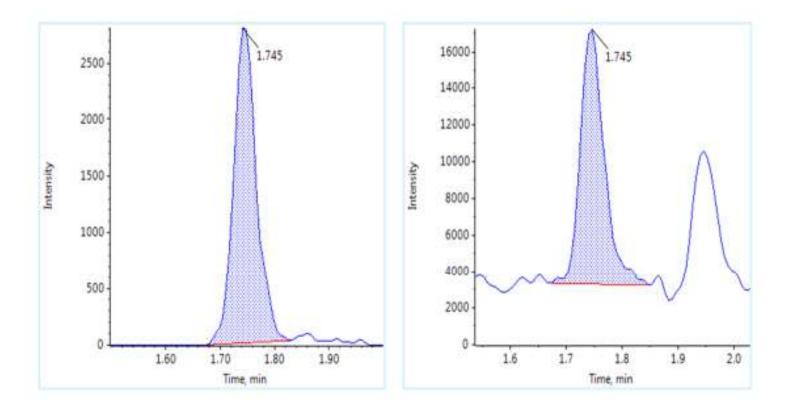
30

3.06

6.34

15

15


Zolpidem.

THC-COOH

The SCIEX X500R QTOF System – MRM^{HR}

Scheduled MRMHR (vs TOF scan)

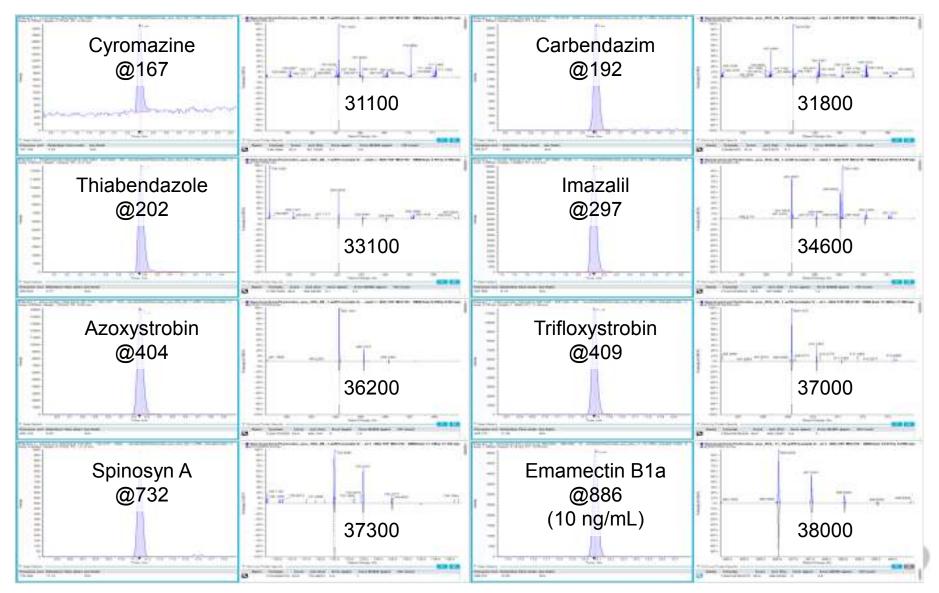
Buphedrone (5 ng/mL in urine, 10-fold dilution, 10 µL injection)

MRM^{HR}: 178.1→131.070±0.01 m/z

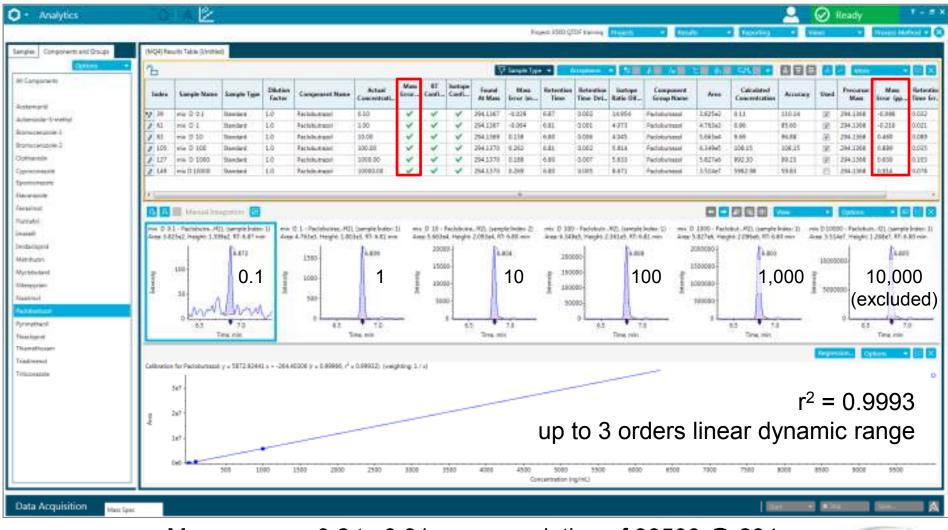
TOF-MS: 178.1226±0.005 m/z

The SCIEX X500R QTOF System – MRM^{HR}

Scheduled MRM^{HR}, 372.2→169.0644±0.0100 m/z



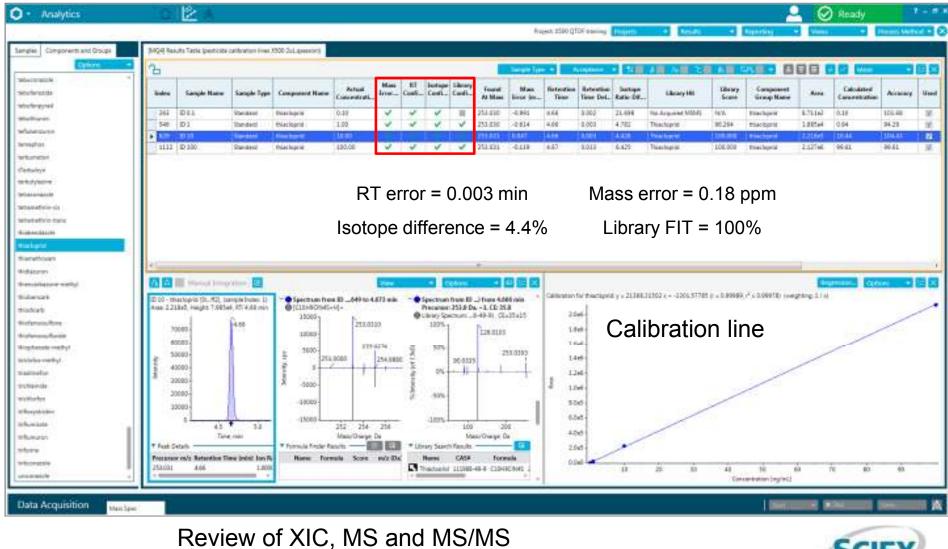
JWH-122 5-OH pentyl in urine (Urine was diluted 10-fold, 10 µL injection)


The SCIEX X500R QTOF System – Performance

Sensitivity and Resolution (1 ng/mL Pesticides , 5 μ L injected, XIC \pm 5 mDa)

The SCIEX X500R QTOF System – Performance

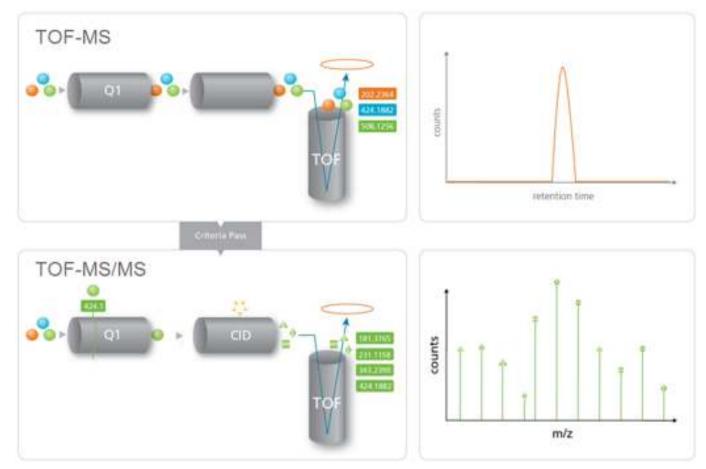
Linearity and Mass Accuracy (Paclobutrazol 0.1 to 10,000 ng/mL)



Mass error = -0.2 to 0.91 ppm, resolution of 30500 @ 294

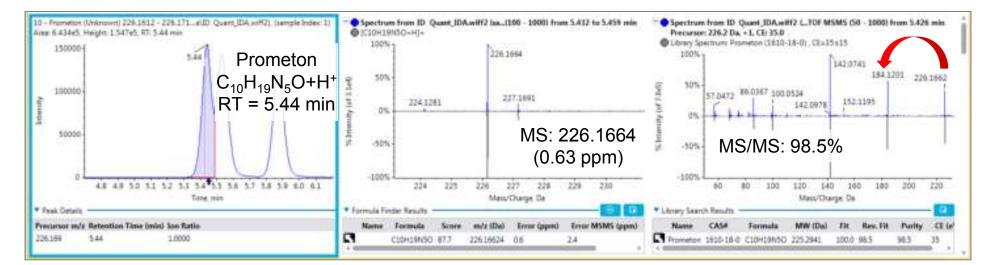
SCIE

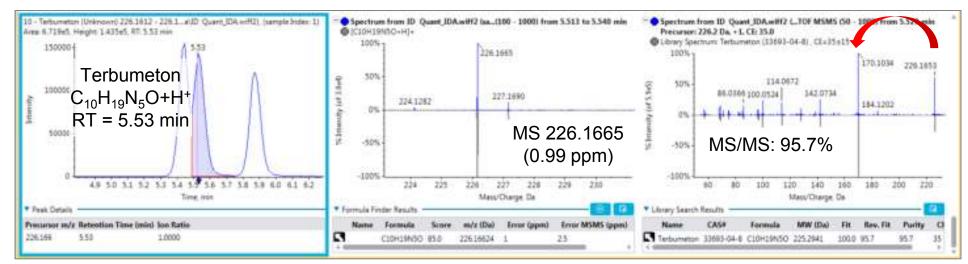
The SCIEX X500R QTOF System – Performance


MS/MS Identification of Thiacloprid (10 ng/mL)

Information Dependent Acquisition of MS/MS (IDA)

Provides MS/MS Spectra with High Selectivity (Q1 Resolution unit)




IDA can be used with and without inclusion list for target or non-target screening

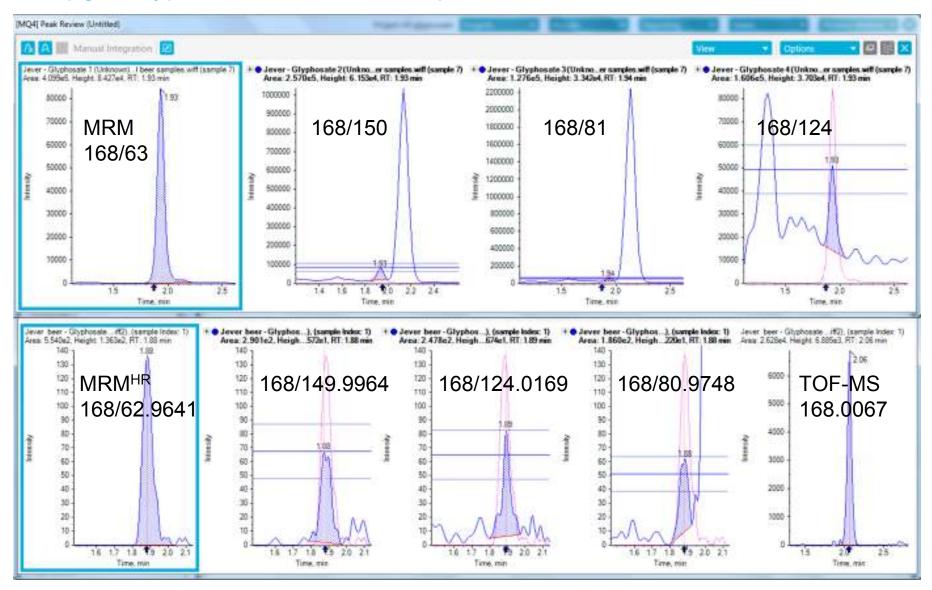
The SCIEX X500R QTOF System – IDA

Confident Identification of Isomers using MS/MS (Prometon vs. Terbumeton)



Identification based on MS/MS library searching (Q1 at unit resolution)

Combining Selectivity of MRM and High Resolution



Unit Q1 isolation, fragmentation using optimized CE and narrow XIC of product ion

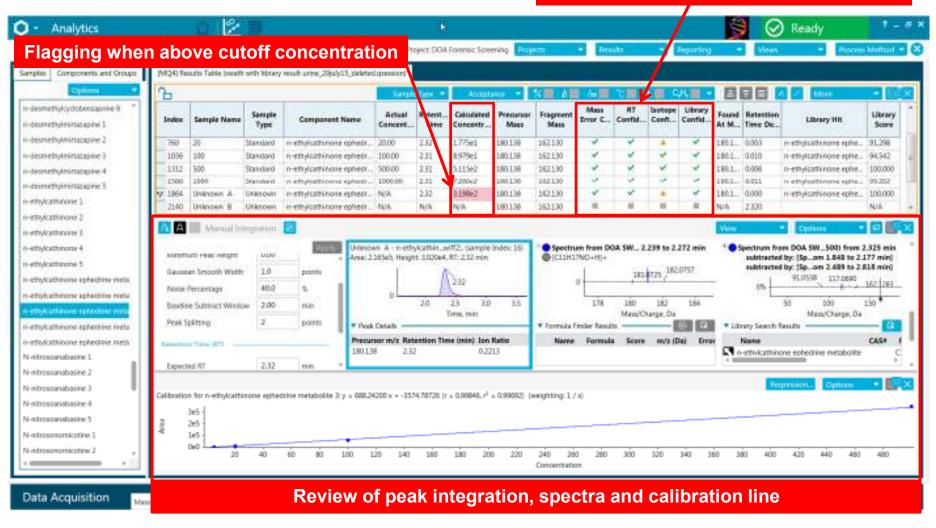
The SCIEX X500R QTOF System – MRM^{HR}

24 µg/L Glyphosate in a Beer Sample

Perfect Balance to Elevate Your Lab's Performance

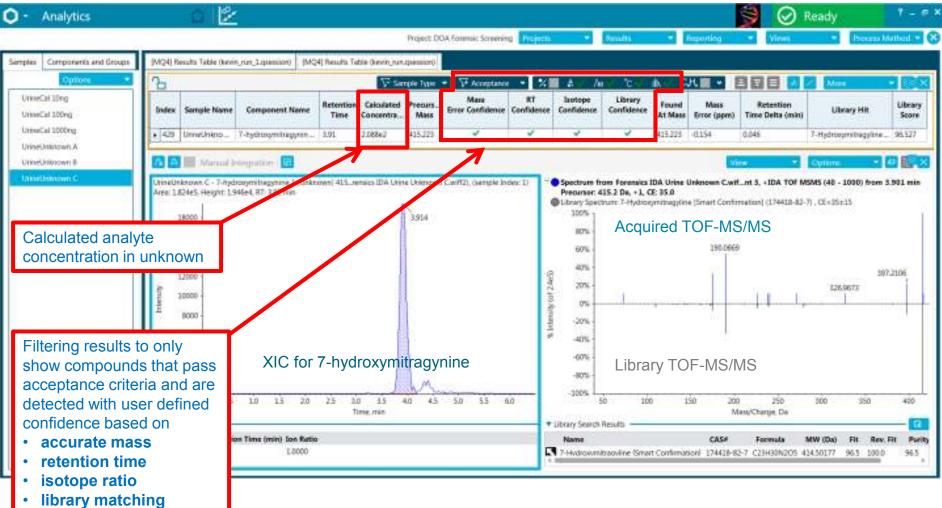
SCIEX X500R QTOF System Powered by SCIEX OS Software

- The first robust, high performance high resolution MS/MS system designed for routine use.
 - Sensitivity to easily detect required drug cutoff concentration levels
 - Resolving power to remove interference from complex forensic matrices
 - Linearity to quantify up to 4 orders of magnitude
 - Identify compounds based on mass accuracy
 - Confident identification based <u>MS/MS</u> (IDA, MS/MS^{ALL} with SWATH[™] Acquisition and ion ratios
 - Industry leading robustness of Turbo V[™] source and Curtain Gas[™] interface
 - Simple software workflows that deliver reliable results, it's the solution that's ready to meet your challenges today and for the future, from the trusted LC-MS/MS industry leader.


Targeted Data Processing Workflow

Identification and Quantification in SCIEX OS Software

3. Review Quantitative and Qualitative Results


Traffic Lights to indicate confidence

Identification and Quantification in SCIEX OS Software

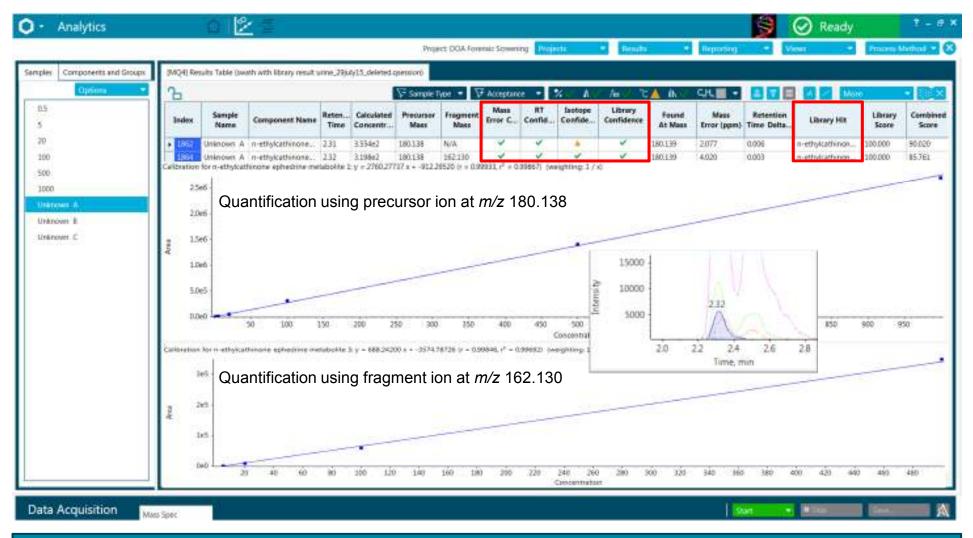
3. Review Quantitative and Qualitative Results



Targeted Data Processing of TOF-MS -Information Dependent Acquisition- TOF-MS/MS acquired data

Identification and Quantification in SCIEX OS Software

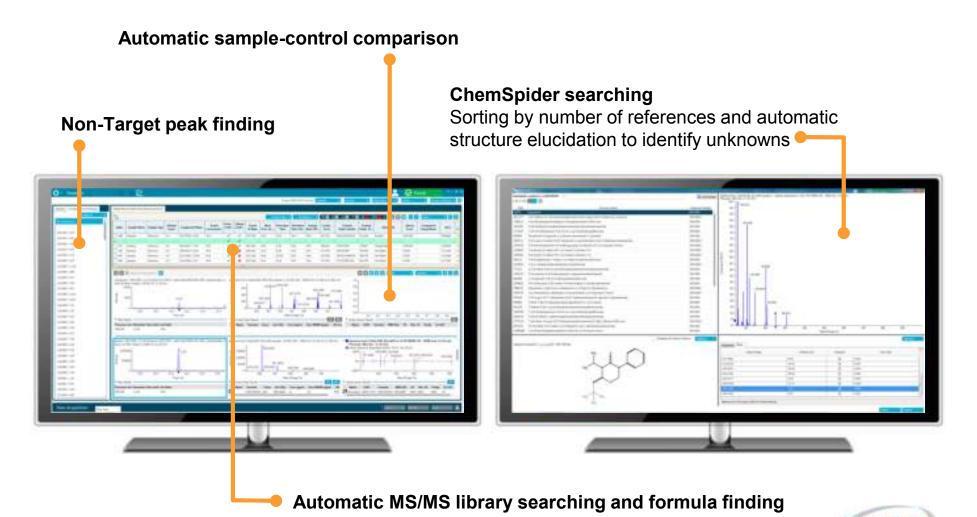
Highest confidence gained through library MS/MS comparison


XIC chromatograms

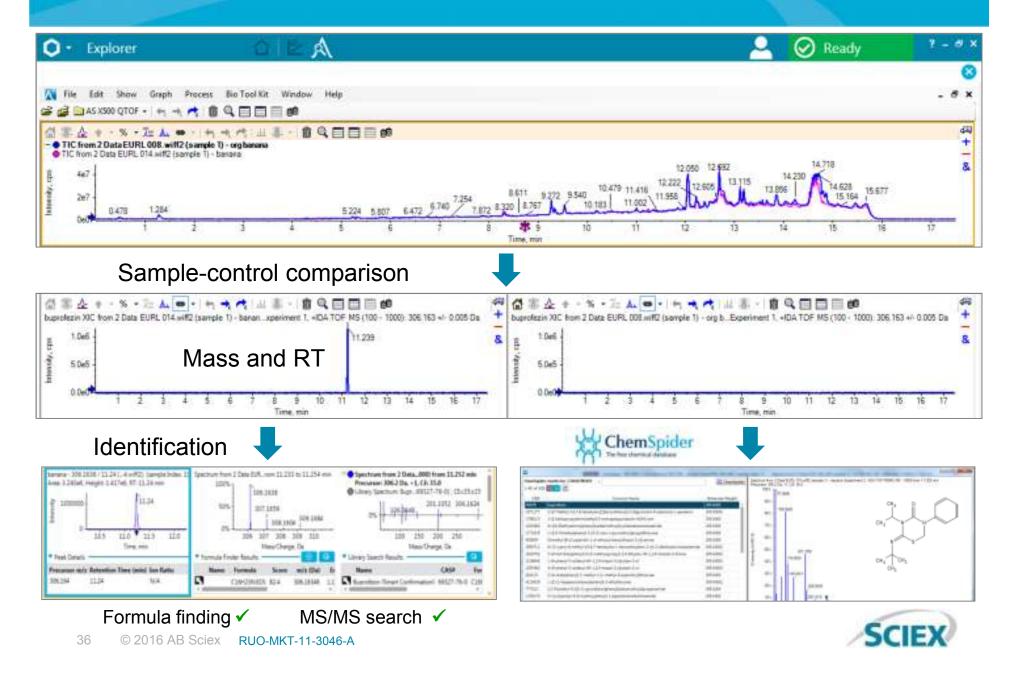
MS spectra

MS/MS spectra

Confirmation and quantitation using SWATH[®] acquisition for for for for a screening



- 1. Identification based on unique fragment ions and their ratios as well as MS/MS library searching
- 2. Quantitation on both precursor ion and fragment ions


SCIEX OS Software – Unknown Identification

Software Improvements and Details

SCI

Non-Targeted Data Processing Workflow

Unknown Identification in SCIEX OS Software

1. Automatic Sample-Control Comparison and Compound Identification

	No.								Numb DOL Ivee	nicleming Drifter	Col Based	· Contract	Read	
permits and Groups \$100 Ma	Auros Table Givenned													
		-							elelas +	-				_
						-	-		assumed a	Record and a second				
i kulea	Sample Marrie	Sample Type	Component Name	Pressoure Mass	Termula Coeffidence	Sound At Mass	Formula Finder Results	Formula Finder Scare	Non-Targeted Peak	Area Ratio of comparison				
	Lakennis 12	Unknasse	114-0088/0.90	118.087	4	114:007	64~7580	72.386	- 10	19-209				
18	uitmows 10	Unknaisen	244-2038 / 0.66	148.322	× .	146.100	C1+13ND2	85.078	98	\$2,338				
182	orienzew 10	University	279.2934/10.77	179-094	4	279.094	CB+G49407	87.795	38.	21.404				
387	unknywe 18	Unknown	278.2938/7.81	279.084	4	219.094	C\$H\$475N802P	\$3.518	91	38.872				
111	unineus 10	Undergrown	279-3942 / 6.33	279-094	4	219.094	C34H273N202	91.745	98	11.599				
154	valances \$2	Understein	\$12,2538 (13.33	312.338	4	812,288	C12+91145CP	84.478	用	\$1784.495				
D 234	Lotterer II	Medicineter.	TATING CHART	101.101	_	THE OWNER WATCH	CERNICHTERING	10.013	6	830.424				
306	ceknosun 10	Unkridere	376-5413 / 8.96	176,141	×	198141	CINH20R3N5/05	18.242		322.865				
417	Columnics IS	Webrawtt	378.2738./9.74	376372	4	278.172	C/1923F1965	55.298	98	873.097				
228	ontennes 12	Orleason	39412766/18125	994.379	4	184.119	CLEHZSKINICS	95.665	9	467.330				
* Feet	as m/c Seturing Dis	ere housing these Res	Time, ren			and shares and	uta findar Besuta -		Mas/Dwgs.		Library Search	62 82 83	84 83 94	63 - 1
372.187	10.00	N/M	194				ann Annala	form m/s the	ú frem løgend	Tree MSMS (pped)	and the second s		liDal Fit Rev. Fit Pr	ntly (E

Automatic formula finding

Unknown Identification in SCIEX OS Software

1. Automatic Sample-Control Comparison and Compound Identification

	r realts for; C25H05N02	ChenSpiter	Spectrum from unknown 1 Press and 177.2 De CT	Coll Interple 1	- unknown 10, E	operiment 8, +TOF MS'3	(50 - 1000) Iham 10 566 min
1-422 af	422 C		100%	+			
CRD	Common Name	Molecular Weight	95%				
4505494	(25.3R)-N-Alty-2-cyclapropy-3-hydroxy-3-Q-naphthy0-N-phenyloroparamide	371,4715 *	30%			LOS	s of OH group
4506434	N-Benzyl-N-(2,4-dimethoxybenzyl)-3-phenyl-2-propyn-1-emine	171.4715	871.				0 1
1546860	1-Cycloheyt-2 phenyl-45-dihydrosospine(3.2.1 H)indole-8-carboxylic acid	371,4715	80%				
567192	(2E)-N-Bengyl-3-J4-(bengytoxy)phenyt)-N-ethylactylamide	3714715	784.				
567196	(20)-N-Berzyl-3-(2-(berzylosy)phenyl)-N-ethylacrylamide	171.4715	70%				225
567238	NN-Dibercyl-4-(4-methylphenyl)-4-oxobutariamida	371.4715	155			C.H.NC	0* (354,1852 Da)
757318	4-(3.4 Omethylpheryl)-N-(Aptenylmethyl)-4 oxobutaramide	371,4715				C25124	(004,1002 Da) Y
120316	GEAD-1-(8-Phanyl-1'H-spiralchronene-2.4-piperidir(-1-y0-2.4-hexadien-1-one	171.4715	2 (Q)-			1	
844338	N-I0-Wethyl-1.4-dihydio-211-chromen-4-y0-3.3-diphenylpropunamide	371.4715	E 55%-				
010482	N (2-Q3-Ditycho-2-benzofanen 5-yf-2-propanyi) 22-diphenytecatienide	371,4715	50%				N
256258	3-14-Biphenykyl-N-12-butosphenytacrytenide	371.4715	1 -57				
366688	3-E4-(Berzyłow)(phery/tamino)-1-(8-xopropy/phery/8-3-proper-1-one	375.4715	8 10-				~ · · ·
\$15505	2-8phenyly(3-(3-(hyshosymethy(berzy()-1-pyrrolid ry()metherone	\$72,4715	28% -	2	V		
341416	[] (4 Hydroxypentpi) [H index 3-yi](4 methyl-1 nephthylmethanone	371,4715	30% -27.9951	6	100		\sim
981440	(I-(3-Hydroxypanty))-IH-iodal-3-y())-methyl-1-niphthyl/methanone	arti-4215	25%		217.14	24	
341440	11-0-nyaraywayt-in-naa-i-jiji-sajarayijewitasona	1414/44	20%-			OH-	
341468	(1-Hesyl-5-hydrosy-3H-indoi-3-y01-naphthy0methanone	\$71,4715	18%				
941505	D-Methoxy-1-raphthy60-pevtyl-1H-indol-3-y0methanione	371.4715	1000 - 100	69-022	725.120		
341532	(5-Methoxy-1-saphthy6(1-pertpl-1H-indoi-3-y0methanone	371.4715	ET a	12	19,0585	217.1682	
841340	(8-Wethoxy-1-naphthyl((1-pentyl-1H-tridol-3-y()methanone	\$71,4715		-0.4940			
341571	II -B-Hydrosyhesy0-1H-indol-3-y01-naimty6methanone	371,4713	100	· 700	300	nçê kçe	sala rea ada ada
		· · · · · · · · · · · · · · · · · · ·		5.1.15.2.10		Mass Charge,	De la constante
111112							
111152	Display all Ca	tion Atoms					Option
		tion Atoms Prom.	Fogwarts Feaks				stoom.
comp	calition: C ₁₁ H ₇ O* (155.0491 Da)	tion Atoms	Programma (Peoles) (%))	Num. H	Broken Bonds	Enor (Da)	Composition
comp		con Atoms				Enor (De)	
comp		con Atoms		H.			Corpositor
comp		con Atoms	69/1 127.0542	H -1		0.000	Composition C10.H7+
comp		bon Atams	(%)) 127.0542 155.0493	14 14		0.000	Composition C10.H7+ C11.H7.O+
comp		bon Atams	///) 127.0542 133.0493 244.1332	8 4 4		0.000 0.000 0.003	Composition C10.H7+ C11.H7.O+ C15.H38.N/Q2+
comp		bon Atams	44/8 127/2542 155/0493 244/1322 284/1370 354/2852	н -2 -4 -4 -4 -4 -4 -4 -4	8cmb 1 1 1 1 1 1	0.000 0.000 0.002 0.002 0.003	Composition C10.H7+ C11.H7:O+ C13.H18.N/02+ C20.H14.N/O+ C25.H24.N/O+
comp		bon Atama	w/¥ 127.0542 155.0493 244.1332 284.1070	н -4 -4 -4 -4	50mb	0.000 0.000 0.002 0.002	Composition C10.H7+ C11.H7:O- C15.H3E.NQ2+ C20.H34.NO+
comp		Son Atoms	44/8 127/2542 155/0493 244/1322 284/1370 354/2852	н -2 -4 -4 -4 -4 -4 -4 -4	8cmb 1 1 1 1 1 1	0.000 0.000 0.002 0.002 0.003	Composition C10.H7+ C11.H7:O+ C13.H18.N/02+ C20.H14.N/O+ C25.H24.N/O+
comp	onition: C ₁₁ H ₇ O* (155.0491 Da)	nemSpider se	6/3 127.0542 135.0403 244.1332 284.2070 354.2055 372.2056 Num. fragments 3	H -2 -4 -4 -4 -4 -0	Bonds 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0	0.000 0.000 0.002 0.002 0.003 0.003	Composition C10.H7+ C11.H7:O+ C13.H18.N/02+ C20.H14.N/O+ C25.H24.N/O+


Summary

- Hardware
 - SCIEX ExionLC[™] Systems
 - Fully controlled by SCIEX OS software
 - Improved software integration for better stability
 - SCIEX X500R QTOF System
 - N-optic design
 - Heated TOF path
 - Minimized footprint, engineered for simplicity and service accessibility
- Software
 - SCIEX OS Software
 - New user interface
 - Simultaneous identification and quantitation
 - Automatic unknown identification
- Application data
 - Target identification and quantitation
 - Unknown screening

Thank you for your attention!

You ready to get behind the wheel?

Trademarks/Licensing

For Research Use Only. Not for use in diagnostic procedures.

The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners. AB SCIEX[™] is being used under license. AB Sciex is operating as SCIEX.

© 2016 AB Sciex.

