

Answers for Science. Knowledge for Life.™

NAME TITLE, LOCATION, DATE

Lipidomics

A Subset of the Metabolome

- The study of pathways and networks of cellular lipids in biological systems.
- The 'lipidome' describes the complete lipid profile within a cell, tissue or organism and is a subset of the 'metabolome'
- The metabolome is the total number of metabolites present within an organism, cell, or tissue

The Challenge in Lipidomics Research

- -Lipids are polymeric structures and their individual elements have their own pathways
- -Breakdown into intermediary metabolites (FAs)
- Mapping lipids requires mapping to the right level

Complex Lipids are like a Matrix

- Lipid are present in classes that have concentrations and compositions (important for level of metabolism)
 - Concentration = sum of the FAs for any given class (column)
 - Composition = relative abundances of each FA (or species) across many classes (rows)

Sum = concentration

Sum = composition

Complex Lipids are like a Matrix

- Lipid are present in classes that have concentrations and compositions (important for level of metabolism)
 - Concentration = sum of the FAs for any given class (column)
 - Composition = relative abundances of each FA (or species) across many classes (rows)
- When FA metabolism is altered there is the ability to change FA composition of all classes

Complex Lipids are like a Matrix

- Lipid are present in classes that have concentrations and compositions (important for level of metabolism)
 - Concentration = sum of the FAs for any given class (column)
 - Composition = relative abundances of each FA (or species) across many classes (rows)
- When FA metabolism is altered there is the ability to change FA composition of all classes
- When lipid class metabolism is altered there is the ability to change all members of the class

		LIPID CLASSES							
		CE	TAG	DAG	FFA	РС	ЫЕ	LPC	LPE
S	14:0								
	16:0								
	18:0								
	20:0								
	24:0								
	14:1								
	16:1								
	18:1								
	20:1								
	18:2								
FATTY AC	18:3								
	20:2								
	20:3								
	20:4								
	20:5								
	22:4								
	22:5								
	22:6								

What is needed from a Lipid Platform

1) Specificity

 A non-specific method (e.g. PC 36:2) does not allow mapping to the elements of the matrix

2) Quantitation

 A non-quantitative approach does not allow accurate summing of the rows and columns

3) Comprehensive Coverage

 A partially complete matrix is difficult to interpret

Metabolon®

Global Leader in Metabolomics Applications

- Over 10 years of continuous leadership in metabolomics technology development
- Core business is metabolomics services and diagnostic development
- 500 publications, many in top tier journals (Nature, Science, Cell)
- Over 4000 projects conducted with hundreds of clients
- Acquired Lipomics in 2012, a lipidomics company founded in 2000

Partnered with SCIEX to build Next-Gen Lipidomic capabilities

Simplifying the Complexity

Powered by METABOLON®

Standardization of Sample Preparation

- Novel internal standard kits and methods designed exclusively for the Lipidizer[™].
- Built on Metabolon's "know-how" of commercial lipid analysis platforms and standard procedures
- Provides user with confident, reproducible quantitation
- Over 50 internal standards across ten lipid classes – a complete unique strategy!

Lipidomics Workflow Manager

- Sample login and metadata entry
- Selection of lipid class-specific methods
- Fully automated experimental design
 - Internal standard assembler allows automated calculation of volumes to add for your analysis
 - Automated templates of samples batches to ensure statistical distribution
 - Automated SelexION[™] tuning and system suitability tests.
- Controls your entire workflow

QTRAP® 5500 & SelexION[™] Technology

- A complete package for lipidomics analysis
- Robust and trusted quantitative mass spectrometry platform the 5500 QTRAP®
- Ensure the highest level of data reproducibility using the Shimadzu LC System.
- Perform most confident separation of isobaric lipid species using SelexION™ Differential Mobility Separation Technology

Automated Output of Results

- Data Visualization including heat maps, QC charts and quantitative data tables
- Figure resolution allows direct use for publication
- Easy publishing to the cloud portal for expert data interpretation

True biological insights

CLÂSS	SUB_CLASS	CHEMICAL_NAME	HMDB	KEGG	LIPID_MAPS	HIGH_CE_NORMAL(FOLD)	HIGH_TAG_NORMAL(FOLD)	HIGH_CE_HIGH_TAG(FOLD)
		CE(12:0)	HMDB02262		LMST01020001	-0.0469		-0.0776
		CE(14:0)	HMDB06725		LMST01020004	1.4199		1.2284
CE		CE(14:1)	HMDB10367		LMST01020021	-3.0216	-0.7978	3.7875
		CE(15:0)	HMDB60057		LMST01020027			1.2941
		CE(16:0)	HMDB00885	C11251	LMST01020005			1.0804
		CE(16:1)	HMDB00658		LMST01020006			1.1521
		CE(17:0)	HMDB60059		LMST01020026			1.2043
		CE(18:0)	HMDB10368		LMST01020007			1.1017
	-	CE(18:1)	HMDB00918		LMST01020003			1.0582
		CE(18:2)	HMDB00610	C15441	LMST01020008			1.0579
		CE(18:3)	HMDB10370		LMST01020009			1.1149
		CE(18:4)				-0.8704	-0.3228	2.6962
		CE(20:0)	HMDB06740		LMST01020010	-1.1611	-0.7863	-0.9130
		CE(20:1)	HMDB05193		LMST01020011			
		CE(20:2)			LMST01020012	3.1452		1.8641
		CE(20:3)	HMDB06736		LMST01020013			1.1329
		CE(20:4)	HMDB06726		LMST01020014			1.0768
		CE(20:5)	HMDB06731		LMST01020015			1.0918
		CE(22:0)	HMDB06727		LMST01020016			
	-	CE(22:1)	HMDB10372		LMST01020025			
		CE(22:2)	HMDB06737		LMST01020017		-0.9859	
		CE(22:4)	HMDB06729		LMST01020018			
		CE(22:5)	HMDB10375		LMST01020031	1.9222		1.4113
		CE(22:6)	HMDB06733		LMST01020019			
		CE(24:0)	HMDB10376					

Access to Metabolon's Consulting Services

- Cloud enabled data processing including pathway mapping and deeper statistical tool also allowing sharing
- Consulting services and study design for in-depth biological data interpretation and disease relevance.
- Expert advice on alternative matrices and sample preparation
- Expertise at your fingertips

Benefits of the Lipidyzer[™] Platform

Powered by METABOLON®

Specificity

Quantitation

Coverage

Acknowledgements

Sciex

- Fadi Abdi
- Paul Baker
- Eva Duchoslav
- Larry Campbell
- Leo Wang
- Pauline Vollmerhaus
- Aaron Hudson

METABOLON

- Alex Conner
- Steve Watkins
- Annie Evans
- Luke Miller
- Sarada Tanikella
- Corey DeHaven

Avanti Polar Lipids

- Walt Shaw
- Lisa Connell

Legal Acknowledgements:

For Research Use Only. Not for use in diagnostic procedures. The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners. AB SCIEX[™] is being used under license.

© 2015 AB SCIEX.

Appendix

SCIEX Lipidomics Portfolio

Discovery

Quantitative Targeted Profiling

Clinical Utilization

Global Discovery (MS/MS^{ALL})

QTRAP® Platforms

Global Discovery (MPIS)

The Lipidyzer[™] Platform

Validated Assays

SCIEX Triple Quad™ 4500 MD*

* Selected Regions Only