

Answers for Science. Knowledge for Life.™

Alexandre Paccou

For Research Use Only. Not for Use in Diagnostic Procedures.

RUO- MKT-11-5404-A

- The QTRAP[®] instrument
- Calibration Check
- The workflow design
 - What is it?

- How to set up?
- Application examples and what can go wrong...
- Live MasterView[™] software training
- **Questions / Discussion**

Answers for Science. Knowledge for Life.™

Principle of a Linear Ion Trap

An ion trap is working sequently (MS in time) while an QqQ operates continuously (MS in space)

- 0. Dynamic Fill Time determination

- 1. Trapping

- lons enter the linear ion trap
- lons are trapped radially by quadrupole fields (RF)
- Ions can not leave trap due to Cell Exit Potential (CXP) and Exit Barrier (EXB)

1.5. keep the ions happy

- 2. Scanning

- New ions can not enter the trap due to high potential applied at IQ3
- Ramp of auxiliary frequence (AF3) and EXB

Please Note : For all LIT experiments on QTRAP[®] 3200/4000 the Collision Gas (CAD) is usually set to "high". It is used for damping and cooling of the ions. Not necessary for QTRAP[®] 5500/4500/6500+

LIT Calibration – please check from time to time

Right click into the table

- 2. Choose correct reference masses
- 3. Control Width and compare with specification
- Control Mass shift <|0.1|
- 5. If calibration peak list tab is not present=>

=>Tools/settings /appearance options/Tab : miscellaneous/select «show mass calibration peak list »

Answers for Science. Knowledge for Life."

IMPORTANT: Updating trap method settings after calibration of LIT (2) - using the script

File Salt View Tools Window	Solat 1940		
80000000000000000000000000000000000000	AddhormalizedADC Analyst12Peal/EnderParama AutoQuent: Reporter Settings AretageRatoCalc 3	C B RVC_LHW_Bruns	
Security Configuration Hertware Configuration Report Template Editor	Drange AMerican Drange AMerican Create Quan Methods Prom Text Ples Create Text File from Quart Nethod	2	
3	Change All Methods Change all methods in the project KvC LHW Bruns		
	Source Parameters IonSpray V Ion Source Ga Interface Heater Tempera	+ oltage (IS) 1700 as 1 (GS1) 5 ature (IHT)	- 1700 5 100
4	update method with current	instrument settings (AF3+	EXB+C2 Cance

SCIEX

- 1. Confirm presence of LC in active hardware configuration !!!!
- 2. Go to script menu and select script
- 3. Select the project to update
- 4. Select update method
- Click on Change All
- This script will update the AF3 and EXB for all methods in the selected project

Manual Setup is easy – use the right mouse button

How is IDA working?

What does this part of IDA mean?

Dynamic Exclusion

Answers for Science. Knowledge for Life.™

(Dynamic) fill time – (D)FT

- Controls the number of ions entering the trap
- Avoids space charge effects
 - (ions influencing each other due to lack of space)
- Space charge effects can cause:
 - Disturbed peak shape (often "fronting", broadening)
 - (Partial) mass shift
- Min. Fill time:
 - QTRAP® 3200/4000: 1 ms
 - QTRAP[®] 5500/6500+: 50 μs
- Tip: Use the DFT Tracker when running experiments with "Dynamic Fill Time" to find out what values are used for certain scan situations. Use this values as start point for determining suitable "Fixed Fill Times" if desired
- Tip: Particular on an QTRAP[®] 3200 "Fixed Fill Time" & Q0 Trapping increases sensitivity

(Dynamic) fill time – (D)FT

Answers for Science. Knowledge for Life.™ © 2017 AB Sciex

 \cap

and here is my first nice aquired spectrum...or?

(Dynamic) fill time – (D)FT – as it should be

CAD and CE in Enhanced Product Ion Scan (EPI)

Period 1 Experiment 1 Parameter Table Source/Gas Compound I		Period 1 Experiment 1 Parameter Table Image: Compound Source/Gas Compound Declustering Potential (DP) 60.0 + Entrance Potential (EP) 10.0 +
Curtain Gas (CUR) Collision Gas (CAD) High IonSpray Voltage (IS) Temperature (TEM) Ion Source Gas 1 (GS1) Ion Source Gas 2 (GS2) Apply the following parameters to all other experiments of the same polarity. Source/Gas Compound	vacuum/pressure should be in the range 3.8 to 4.3e ⁻⁵ Torr	Collision Energy (CE) 35.0 ± Excitation Energy (AF2) 100.000 ± Collision Energy Spread (CES) 15.0 ± Apply the following parameters to all other experiments: Image: Source/Gas Image: Compound
OK Cancel Help		OK Cancel Help

© 2017 AB Sciex

0

What is the advantage of a LIT over a QqQ

- Speed and sensitivity for all experiments is higher
 - Q1/Q3 vs. EMS and MS² vs. EPI
- LIT collects all lons in a "mass window" simultanously
 - Having a fill time of 50ms means that ALL ions are collected for 50 ms
 - This compares to a dwell time of 50 ms for EACH ion in QqQ
 - QqQ would need 313.000 msec for this experiment

Scan type:	Enhanced MS (EMS)	-		2	Optim	ize Masses	
Scan rate:	1000 • (Da/s)	1	_	Start (Da)	Stop (Da)	Time (sec) 0.0993	
Polarity	Positive Negative	2		174.000	800.000	0.6261	
-	< regauve					Mass rar	nge window

 EPI experiment up to 20.000 da/sec and in addition change CE while LIT is trapping the ions => CES

Confirmation by QTRAP[®] or QqQ (0.5 ng/mL Atrazine)

EPI Simazine at 35 eV with CES of +/- 15 eV Simultaneous trapping of fragment ions coming from 3 different CE (20, 35 & 50 eV)

SCIEX A

Answers for Science. Knowledge for Life.™

Fast Screening with Quantitation for various applications

SCIEX

Answers for Science. Knowledge for Life.™

Screening and Confirmation:

Answers for Science. Knowledge for Life.™

Some more examples for troubleshooting [1]

What can be done to solve it?

Cause: EXB is too high so ions are held in the trap too long causing ghost peaks or noise to appear in the low end (50 – 80 amu) of the spectrum.

Corrective Action: Instrument should be re-tuned in LIT scan mode (appropriate polarity) to reduce noise in the low mass region while still meeting specifications at all masses. Follow the steps below.

- Infuse instrument with appropriate TRAP tuning solution (PPGs or ESdepending on instrument) at 5 – 10 uL/min
- 2. In Tune Method Editor Window, select:
 - ER scan type
 - Add mass at 59 Da if tuning 3200 QTRAP with PPGs or 60 Da if tuning 4000 QTRAP with Agilent solution – DP start and stop can be set between 100 – 130
 - Scan rate at 4000 Da/s (or appropriate scan rate).

Some more examples for troubleshooting [2]

Using the same compound in both spectra, top panel shows expected peak detection at Da < 140 and bottom panel shows absence of expected peaks in the same low mass region.

Cause: EXB is too low so ions are not held in the trap long enough resulting in the absence of peaks in the low end (typically < 140 Da) of the spectrum.

Corrective Action: Instrument should be re-tuned in LIT scan mode (appropriate polarity) to increase peak detection in the low mass region while still meeting specifications at all masses. Follow the steps in the previous section (section 1) to adjust EXB intercept until peak detection is acceptable in the low mass region.

Answers for Science. Knowledge for Life.™

Some more examples for troubleshooting [3]

Cause: Incorrect AF3 value. Typically, an incorrect AF3 value will manifest itself as tailing on spectral peaks This is most common when AF3 is too low.

An EPI scan with Q1 resolution set to unit resolution. All fragment ions should be monoisotopic, and free from artifacts. Notice the abundant tailing on the m/z 285 ion in the left panel. By adjusting the AF3 value, this artifact was eliminated.

Corrective Action: Instrument should be re-tuned in LIT scan mode (appropriate polarity) to reduce artifacts. If the artifact cannot be reduced by normal tuning procedures, try tuning AF3 using an EPI scan where Q1 is at unit resolution and CE is set to 10. You will likely have to increase the fill time to achieve reasonable peak statistics for judging appropriate AF3 values. See Figure 9 below for example of well tuned AF3.

Some more examples for troubleshooting [4]

Library search filters out relevant ions. If the ion trap is too sensitive such that peak widths of tuning compounds are below 0.4 at full width half height, then the library search algorithm sees the peaks as noise and does not integrate them.

Answers for Science. Knowledge for Life.[™] © 2017 AB Sciex

 \ominus

Cause: Peak widths too narrow on LIT at 4000 Da/s scan rate.

Correction Action: Instrument should be re-tuned in LIT ER scan mode (appropriate polarity) at 4000 Da/s to ensure that peaks in the tuning solution have a peak width at half height in the range of 0.4 and 0.7. It is recommended to increase EXB to achieve this, however keep in mind not to increase it too high which could lead to the problem in section 1.

Section	Potential Issue	Corrective Action						
1	Low Mass Noise	EXB too high, re-tune the instrument.						
2	Reduced Low Mass Ion Intensity	EXB too low, re-tune the instrument.						
3	Peak Tailing	Incorrect AF3, re-tune the instrument.						
4	Library Search Filters Out Relevant Ions	Peak widths too narrow on LIT at 4000 Da/s scan rate, re-tune the instrument.						

0

QTRAP[®] 4500/5500/6500+ systems with Analyst[®] advanced sMRM algorithm

Answers for Science. Knowledge for Life.™

Sensitivity, Selectivity, and new Analyst 1.6.3 software

Quantitation and Identification of ~ 400 agro chemical

Answers for Science. Knowledge for Life.™

MRM-Triggered MRM + Group MRM-Triggered MS/MS

- MRM Triggered MRM can be combined with Group Triggered MS/MS
- Primary MRM are used to trigger secondary MRM
- Only when all primary and all secondary MRM are above the thresholds will IDA be triggered
- Thresholds can be set individually
 - Can be set to zero for weak transitions
 - Could be set based on known ion ratios

What is this....?

SCIEX Answe

Answers for Science. Knowledge for Life.™

....that is why!

© 2017 AB Sciex

...ohh what happens with the 2. MRM?

Watch the settings in the method carefully

MS Advanced MS Experiment 1 • Scan type: MRM (MRM		•	(⊻) Er © Ba	Scheduled MRM abled Isic 🚇 Advance	sd imp	ort Line							
Polarity Polarity Negative			Duration: Cycles:	8.000 490 +	Period Summary (min) Delay T Cycle:	Time: 0 1.0000	(mec) (mec)						
MRM detection window:	60	(sec)		Git Mass (Da)	Q3 Mass (Da)	Time (min)	ID	K	Group	Window (sec)	Primary / Secondary	Threshold	Dwell Weight
			1 4 2 4 3	32.000 32.000	234.000 123.000	4.60	Jens 1 Jens 2	(A) (A)		120.0 120.0	1 2	1005 00 20000000 00	0.10 10.05
arget Scan Time: Edit Parameters	1	(sec)											

© 2017 AB Sciex

0

sMRM Advanced Settings to avoid issues

								0	-(•)
-	Q1 Mass (Da)	Q3 Mass (Da)	Time (min)	ID	Group	Window (sec)	Primary / Secondary	Threshold	Dwell Weight
1	180.100	105.100	2.90	3,4-Methylenedioxyamphetamine			1		1.00
2	208.100	163.200	4.71	3.4-Methylenedioxyethylamphetam			1		1.00
3	194,100	163.100	4.44	3,4-Methylenedioxymethamphetam			1		1.00
4	194,100	105.100	4.44	3.4-Methylenedioxymethamphetam			1	100000000.00	1.00
5	328.200	165.200	0.00	6-O-Monoacety/morphine 1			1		10.00
6	328.200	211.200	0.00	6-O-Monoacetyimorphine 2			1	100000000.00	10.00
7	136.100	91.000	4.11	Amphetamine 1			1	and the second s	1.00
8	136.100	65,000	4.12	Amphetamine 2		-	1	10000000.00	1.00
9	290.100	168.200	4.56	Benzoylecgonine 1			1	monenter	1.00
10	290.100	105.100	4.56	Benzoylecgonine 2			1	10000000.00	1.00
11	468.300	396.300	4.52	Buprenorphine			1		1.00
12	304.200	182.200	5.77	Cocaine			1		1.00
13	300.200	165.200	4.57	Codeine 1			1		1.00
14	300.200	215.200	4.57	Codeine 2			1	100000000.00	1.00
15	177.100	80.000	3.48	Cotinine			1		1.00
16	302.200	199.200	4.57	Dihydrocodeine			1		1.00
17	200.100	182.200	0.80	Ecgoninemethylester			1		10.00
18	278.200	234.200	6.66	EDDP 1			1	10000.00	1.00
19	278.200	186.200	6.66	EDDP 2			1	10000000.00	1.00
20	166.100	115.100	3.78	Ephedrine			1		1.00

- Do not use groups in acquisition method or primary secondary to avoid what we saw
- Set a very high threshold for the second MRM of quantitation compounds so that we never get IDA EPI on the second MRM
- Threshold set for each 'primary' compound to get good MRM ratios and IDA EPI when we want it

Finally !

Questionable ID using only MRM Ratio, MS/MS Confirmation

10 µg/kg Feniramol in Spinach (MRM ratio error = 32.0)

Processing in MultiQuant[™] and MasterView[™] Software

QTRAP[®] Targeted Screening using MasterView™

Confirmation and Quantitative Comparison

Chin. broccoli sample (extract 5x diluted)								(sublange Be5 - 6e5 - 4e5 - 2e5 - 0e0 - 1 2	3 4	6.3 5 6	P 7 á á Tive.n	Pestic	cide s (2	tanc ng/	lard mL)
laste	erView 🛅 🚞	HE!			H	₩ \$ 00	BEET	New Sessio	m	1	V			1	
	C T R Villf file Name	Sample Name	Number of positive			10/11	Name	Formula	Intensity	Known Concentr	Calculated Concente	Threshold (ratio of control)	Threahold (cps)	Control Intensity	lac Of
5	Standard 2ppb	Sample 1	198	162	V	VVVV8	metakooyi	C15H21N04	856368	10	119.0755	05	1000	71968	1
Ĵ,	Bolk chay	Sample 1	1	15	 V 	VVVV0	inidadioped .	C9H10CINSOS	27009	10	19.7398	0.5	1000	13582	
1	Succes	Samele 1	6	14	1	VVVV0	spirotetramat	C21H27NO5	180172	10	57.3822	0.5	1000	31399	
Ľ	Cabbasa	Canada 1		64	~	VVVV0	cyprodinil	C14H15N3	11184	10	1 1189	0.5	1000	99960	
~	Catologe	Dample 1	-	12	V .	VVV00	fudicitonil	C12H6F2N2O2	2260	10	1,4983	0.5	1000	15086	
18	Chinese Drocsol	comple 1	•	243	1	AVV00	apinetoram A	C42H69NO10	14365	10	75.2241	0.5	1000	1870	
×	Clementine	Sample 1	2	243	i 🗸	VV000	apinosyd A.	C41H65NO10	1082	10	4.3323	0.5	1000	2497	
~	Kale	Sample 1	2	. 27!	s 🗸	VVLOO	triadimelon	C14H16CIN3OS	1024	10	0.6158	0.5	1000	16627	
4	Kohirahi 2	Sample 1	1	14;	1 🖌	10×>0	turalanyi	C17H19NO4	\$7449	10	122,6173	0.5	1000	4685	
~	Kohirabi	Sample 1	3 .	254	~	VAVOO	spiroxamine-1	C18H35NO2	502549	10	214.7741	0.5	1000	23399	
	Mustani green	Sample 1	0	110	1	AVA00	etolenprox	C25H28O3	3154	16	1.6135	0.5	1000	19546	
~	Nappa cabbage	Sample 1		2	~	VOV 00	acephate	C4H10NO3PS	1324	10	5.3448	0.5	1000	2477	
	CJ_1	Sample 1	0	39	~		carboxin	C12H13N02S	1647	10	0.2858	0.5	1000	57624	
	QJ 2	Sample 1	0	112	×	AAV00	tamoxadone	C22H18N2O4	1043	10	3.424	0.5	1000	3047	
2	Orange	Sample 1	2	24	1 -	V0V0 0	spirocamine-1	C18H35NO2	502549	10	214.7741	0.5	1000	23399	
				26	~	V • V • •	tetramethrin-trane	C19H25ND4	26146	10	160.1716	0.5	1000	1632	
Post	ive result: equal or beth	er	0 50 🔹	262	~	Veve e	tetramethrin-cas	C19H25NO4	331.17836	+NH4	349,21218	0.01	349 21207	-0.1	
													and shared.		- P.)
onie:	Chinese broccoli/S	ample 1)	~	Control	Stan	dard 200blSample 1	~	Ros	ws 285				Thread Contract	The second	

Identification of residues above maximum residue limit (MRL) in multiple samples

Answers for Science. Knowledge for Life.™

Answers for Science. Knowledge for Life.™

For Research Use Only. Not for use in diagnostic procedures.

AB Sciex is doing business as SCIEX.

© 2017 AB Sciex. The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners. AB SCIEX[™] is being used under license.

