


# Metabolite Identification Using TripleTOF® Technology & MetabolitePilot™

Alexandre Paccou

Sr Manager, Support, EMEA

Pharmaceutical & Metabolomics





#### **Complementary Platforms**





# Metabolite Identification Workflows with Real-Time Multiple Mass Defect Filtering and SWATH<sup>™</sup> Acquisition

# **Key Challenges of Met ID in Complex Biological Matrices**

- Missing, low-level drug metabolites in complex biological matrices such as bile, plasma, and tissue extracts
- Incomplete metabolite information leading to repeated sample analysis and decreased productivity
- Non-definitive metabolite identification and characterization due to inadequate MS/MS information
- Multiple, non-integrated software platforms complicate data processing, slowing metabolite ID and structure elucidation





# **AB SCIEX for Drug Metabolism**

- 1. TripleTOF<sup>™</sup> Platform Capabilities
- 2. Acquisition Strategies
  - Real-Time Filtering
    - Multiple Mass Defect Filtering (MMDF)
    - Dynamic Background Subtraction
  - Quant/Qual Acquisition
    - Data Dependent Acquisition (IDA)
    - SWATH™
- **3.** Digital record of information (SWATH)
- **4.** Software (MetabolitePilot<sup>™</sup>, MultiQuant<sup>™</sup>)
- 5. Selectivity (SelexION<sup>™</sup>)







# **AB SCIEX for Drug Metabolism**

### 1. TripleTOF<sup>™</sup> Platform Capabilities

- 2. Acquisition Strategies
  - Real-Time Filtering
    - Multiple Mass Defect Filtering (MMDF)
    - Dynamic Background Subtraction
  - Quant/Qual Acquisition
    - Data Dependent Acquisition (IDA)
    - SWATH™
- **3.** Digital record of information (SWATH)
- **4.** Software (MetabolitePilot<sup>™</sup>, MultiQuant<sup>™</sup>)
- 5. Selectivity (SelexION<sup>™</sup>)



# The TripleTOF<sup>™</sup> 5600<sup>+</sup> System

- Speed Up to 100MS/MS per cycle in IDA
- Resolution Up to 35K
- Mass accuracy ~ sub 2 ppm MS and MS/MS
- Dynamic Range for both quant and qual
  - QqQ like performance
- Workflow specific solutions
  - Real-time IDA algorithms (MMDF, DBS)
- SWATH<sup>™</sup> Acquisition



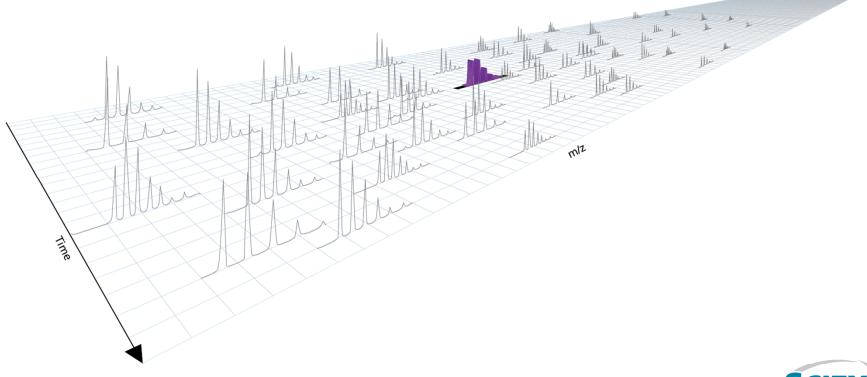


# The TripleTOF<sup>™</sup> 6600 System

- Powerful Performance for Qualitative and Quantitative Analysis
- Linear Dynamic Range
  - Greater than 5 orders
- Extended Q1 mass range
  - Up to 2250 m/z
- Fast Acquisition Rates
  - Up to 100 MS/MS per cycle in IDA
  - Up to 200 MS/MS per cycle in SWATH
- High Mass Accuracy
  - Improved mass stability resulting in easier operative frequency
  - < 0.5 ppm w/ internal reference</p>
  - < 2 ppm RMS external</p>
- Higher Resolution
  - >35,000 in TOF MS
  - >20,000 or >30,000 in TOF MS/MS






# **AB SCIEX for Drug Metabolism**

### 1. TripleTOF<sup>™</sup> Platform Capabilities

- 2. Acquisition Strategies
  - Real-Time Filtering
    - Multiple Mass Defect Filtering (MMDF)
    - Dynamic Background Subtraction
  - Quant/Qual Acquisition
    - Data Dependent Acquisition (IDA)
    - SWATH™
- **3.** Digital record of information (SWATH)
- **4.** Software (MetabolitePilot<sup>™</sup>, MultiQuant<sup>™</sup>)
- 5. Selectivity (SelexION<sup>™</sup>)



- Traditional Strategies IDA, MRM & MRM<sup>HR</sup>
- MRM<sup>HR</sup> High resolution MRM quantitation
- Standard 0.7 Da Q1 Window
- A single analyte is selected, fragmented and a MS/MS spectrum is acquired. Further experiments are acquired in a looped fashion across the LC gradient

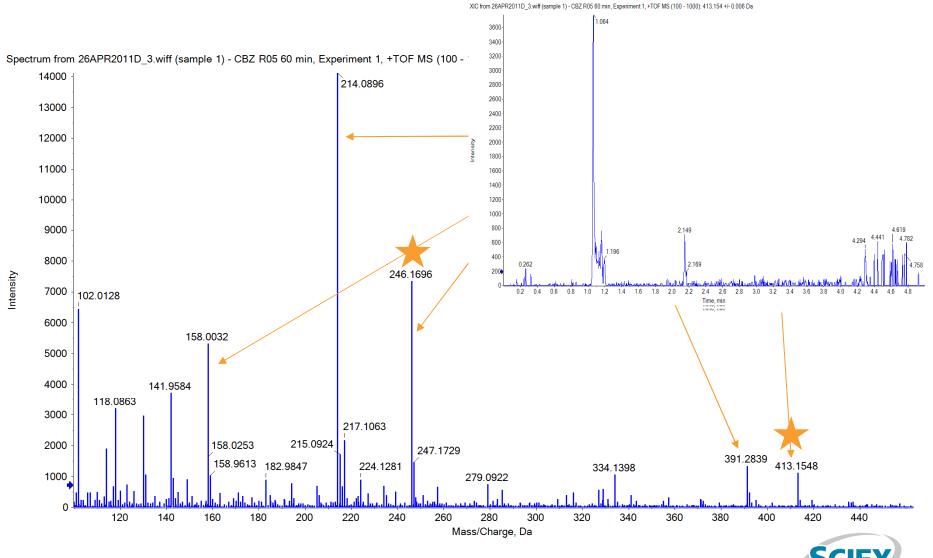




- Real Time Algorithms on TripleTOF<sup>™</sup> Series
- Separate from data processing algorithms
- Eliminates MS/MS triggering on background noise
- Determine which ion(s) are significantly changing with time
- Select the best ion(s) to target for MS/MS
- Applied during UPLC/MS acquisition
- Part of information dependent data acquisition (IDA) logic



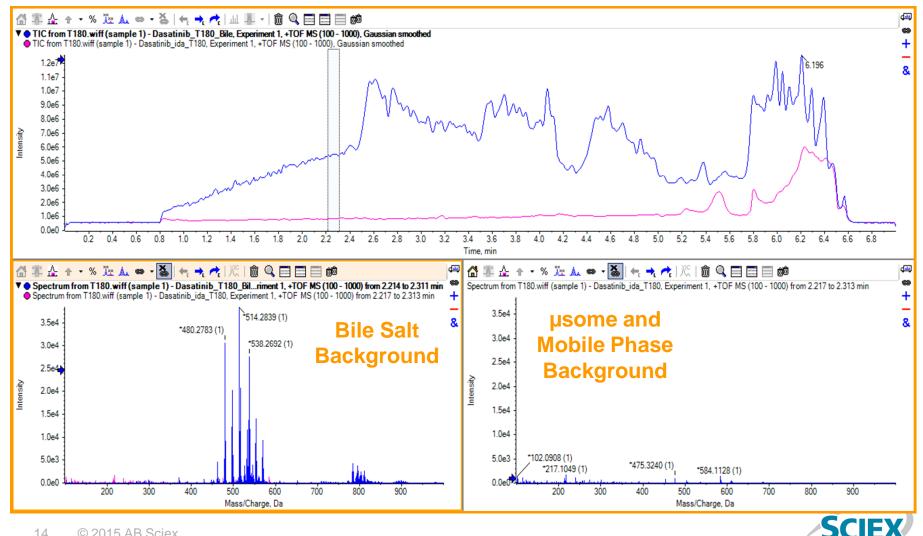
Benefits of Real Time Algorithms on TripleTOF<sup>™</sup> Series


Increased productivity through:

- Single injection workflow for both TOF MS and TOF MS/MS
- Obtain more relevant data (increased MS/MS triggering efficiency)
- UPLC time scale (2-3 sec peak width)
- Complex In-vivo samples, plasma with PEG's, bile samples, tissue samples



# **Dynamic Background Subtraction**


### Increasing IDA Efficiency



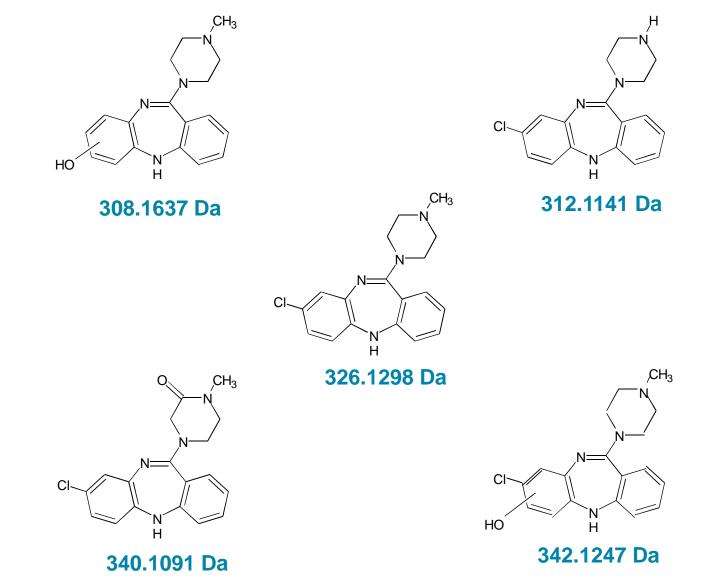
13 © 2015 AB Sciex

### **Dynamic Background Subtraction – Bile Example**

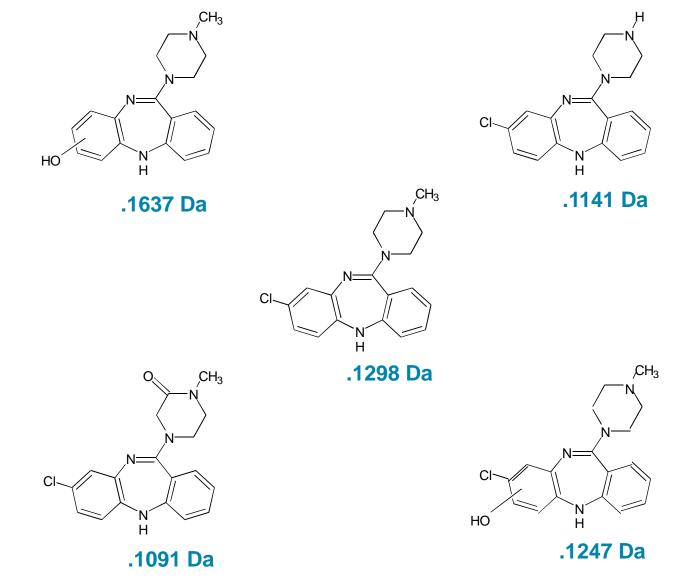
Profound impact on IDA efficiency when dealing with high background as with bile samples



# **Real-Time Multiple Mass Defect Filter (MMDF)**

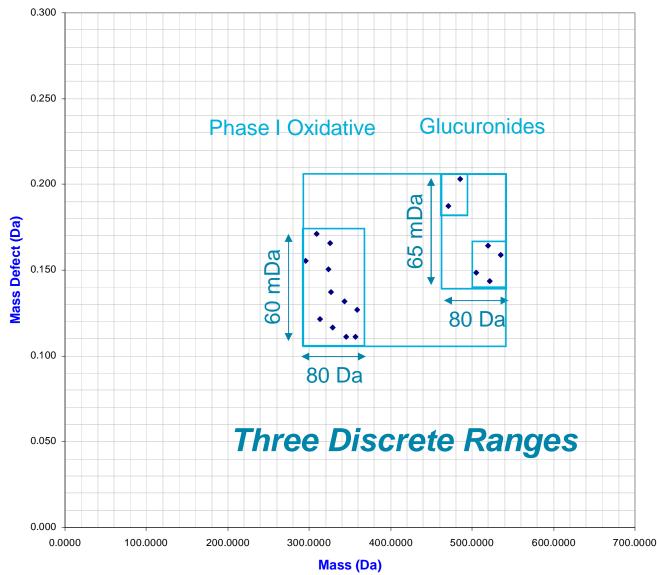

#### MMDF in non exclusive mode

- Using the mass defects based on formula
  - Parent
  - Major phase II
  - Predicted cleavages (optional)
  - Easy to implement
- Useful as a broad general Qual/Quant screen
- Non exclusive mode also allows for simultaneous unpredicted approach
- This is a real-time algorithm for IDA target selection
  - Unique to our software
- In combination with Dynamic Background Subtraction
- The difference between the exact mas and the nominal mass of a compound is known as the mass defect
- In impurity profiling or metabolism studies closely related molecules like a parent and its impurity should have similar mass defects
- We take advantage of this fact during data acquisition to perform MS/MS only on ions that fall within a small window. In the case of Dextromethorphan that is less than a 60mDa window



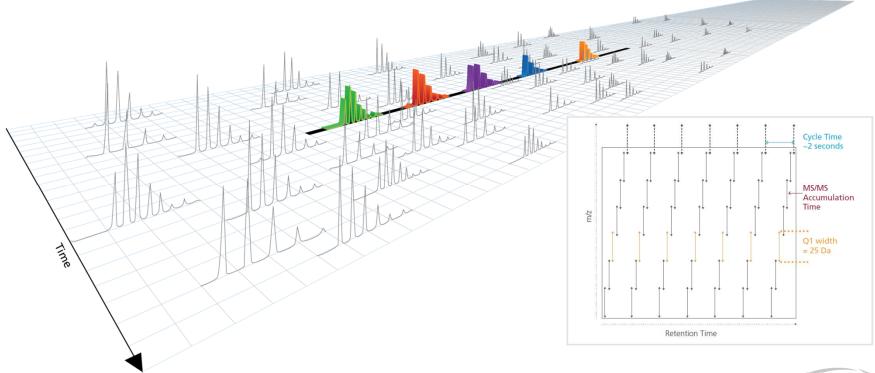

15 © 2015 AB Sciex

### **Mass Defect in Metabolism**



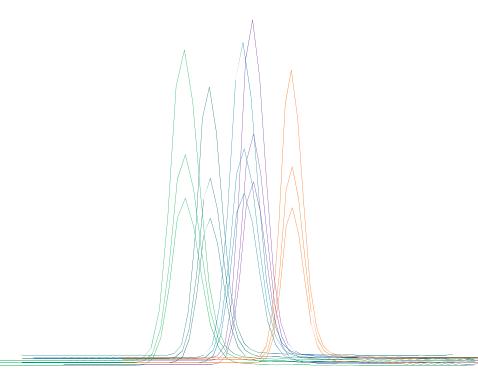

### **Mass Defect in Metabolism**






### **Mass Defect Distribution – Clozapine Metabolites**






- MS/MS<sup>ALL</sup> with SWATH<sup>™</sup> Acquisition
- SWATH is a data independent workflow
- Acquire all data with a single acquisition method
- Generate high resolution quantitative XICs on all analytes





- MS/MS<sup>ALL</sup> with SWATH<sup>™</sup> Acquisition
- Q1 is a variable or fixed window from 1-25Da to allow a number of precursors through
- All ions fragmented in the collision cell and a high resolution composite MS/MS spectrum acquired
- Stepping across the mass range in a loped fashion each cycle to produce composite MS/MS spectra of all precursors eluting off the column





### Benefits of SWATH<sup>™</sup> for Met ID

- 1. Comprehensive quantitative and qualitative analysis of all the sample components in <u>a single injection</u>
- 2. Informative SWATH<sup>™</sup> MSMS for better metabolites structure prediction and site modification including (Less complex spectrum than traditional DIA techniques)
  - MS/MS for Low level metabolite ID
  - SWATH<sup>™</sup> MS/MS retains isotope pattern for each fragment
- 3. High resolution quantification reduces potential for interferences, yet maintains the sensitivity and dynamic range of leading triple quads (Selective quant using product ion mass and sum product ions- MRM style Quant)
- 4. Ultimate safety net for capturing both predicted and unpredicted metabolites
- 5. Easy and Retrospective
  - Requires **no sample-specific method development**
  - Creates a **digital archive** of all analytes, enabling retrospective investigations without re-acquisition



# What Makes SWATH Unique for Metabolite ID?

#### **Unique Qualitative Features**

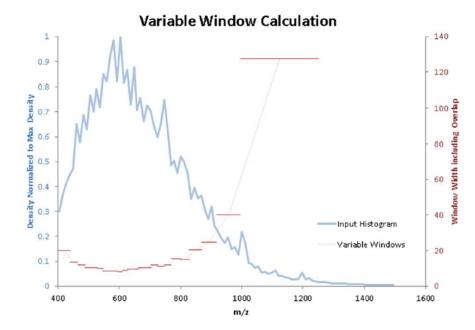
- Less complex MS/MS spectrum than traditional DIA techniques
- Wider Q1 selection retains isotope pattern for each fragment
  - Good for C14/SIL metabolism studies
- 100% MS/MS for Low level metabolite

#### **Unique Quantitative Features**

- Selective MS/MS Quantification- MRM style using single product ion or sum multiple product ions
- Possibility of Multicomponent Quantification in single acquisition method
  - (Total mAb, Conjugated & Free SM)



# Creating a SWATH<sup>™</sup> method in Analyst

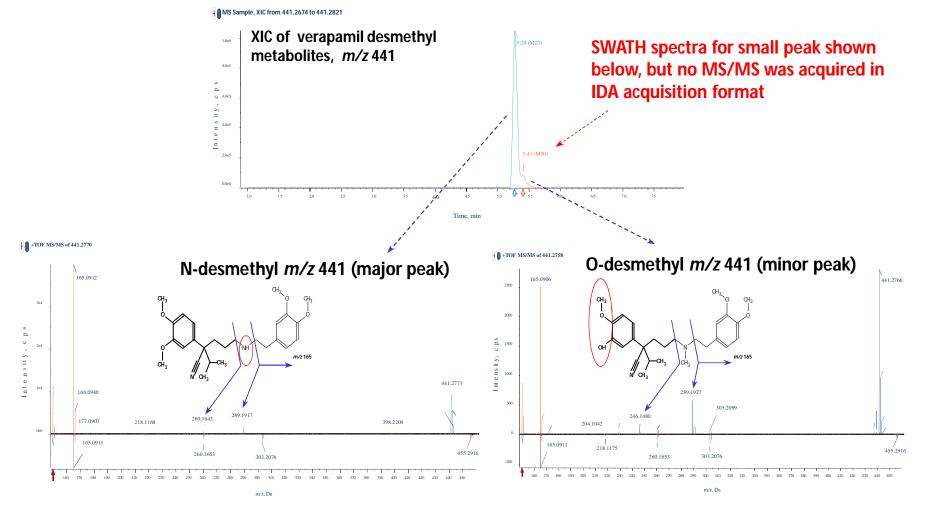

• MS/MS<sup>ALL</sup> with SWATH<sup>™</sup> Acquisition - Method Builder

| Acquisition method                                             | MS Advanced MS                                          |
|----------------------------------------------------------------|---------------------------------------------------------|
| Carl Acquisition Method                                        | Experiment: 25 IDA Experiment Create IDA Exp            |
| 🖃 🛷 Mass Spectrometer 45.008 mins                              | Scan type: Product Ion  TOF Masses (Da)                 |
| 🖻 👶 Period 45.000 mins                                         |                                                         |
|                                                                | Product Of: 979.26764 (Da) Min: 100 Max: 1500           |
| Product Ion (+) 400.0 - 425.0                                  | G High Resoluton                                        |
| Product Ion (+) 424.0 - 450.0                                  |                                                         |
| Product Ion (+) 449.0 - 475.0                                  | Accumulation time : 0.100016 (secs)   Figh Sensitivity  |
| Product Ion (+) 474.0 - 500.0                                  | Enhance Mass                                            |
| Product Ion (+) 499.0 - 525.0 Product Ion (+) 524.0 - 550.0    | Polarity                                                |
|                                                                | Positive                                                |
|                                                                | C Negative Mass (Da) Enhance                            |
| Product Ion (+) 599.0 - 625.0                                  |                                                         |
| Product Ion (+) 539.0 - 023.0                                  |                                                         |
| Product Ion (+) 624.0 - 650.0<br>Product Ion (+) 649.0 - 675.0 | Edit Parameters                                         |
| Product Ion (+) 674.0 - 700.0                                  |                                                         |
| Product Ion (+) 699.0 - 725.0                                  | Period                                                  |
| Product Ion (+) 724.0 - 750.0                                  |                                                         |
| Product Ion (+) 749.0 - 775.0                                  | Duration: 45 (mins) Cycles: 1080 📩 Delay Time: 0 (secs) |
| Product Ion (+) 774.0 - 800.0                                  | Cycle time: 2.5005 (secs) Period: 1 👻                   |
| Product Ion (+) 799.0 - 825.0                                  |                                                         |
| Product Ion (+) 824.0 - 850.0                                  |                                                         |
| Product Ion (+) 849.0 - 875.0                                  | TOF MS with 24 looped product                           |
| 🙀 Product Ion (+) 874.0 - 900.0                                |                                                         |
| Product Ion (+) 899.0 - 925.0                                  | ion scans                                               |
| Product Ion (+) 924.0 - 950.0                                  |                                                         |
| 🙀 Product Ion (+) 949.0 - 975.0                                |                                                         |
| 🐺 Product Ion (+) 974.0 - 1000.0                               |                                                         |
| Eksigent AS2                                                   | 📗 • 25 Da window                                        |
| Eksigent Gradient 2                                            |                                                         |
| Eksigent Loading Pump                                          |                                                         |

 1 Da overlap between windows for complete coverage



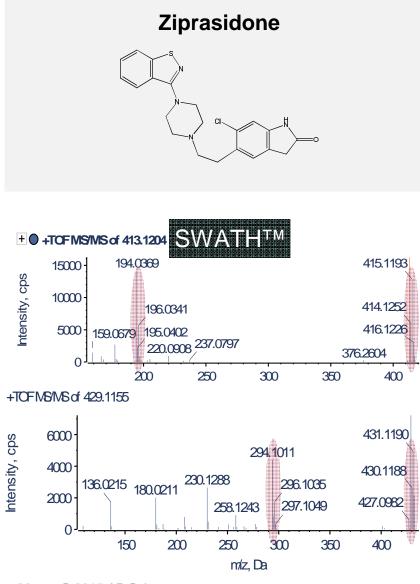
### Variable Window SWATH<sup>™</sup> Acquisition

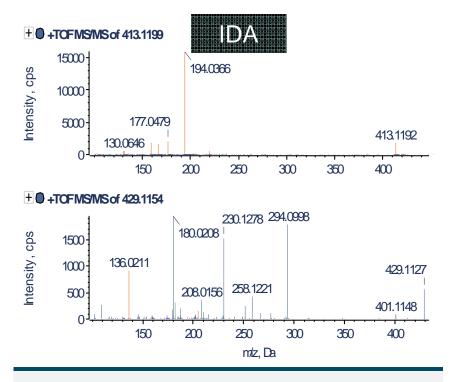



- Adjust Q1 selection window to facilitate detailed coverage of target mass range
- Reduce number of precursors for increased qualitative specificity and quantitative accuracy
- Simple interface for acquisition method building
- Text file import capability for full control over acquisition windows



# High quality MS/MS Spectra for low level metabolites


#### **MS/MS Spectra Acquired for Minor Metabolites**




R. Schneider et al.: Exploiting Variable SWATH Techniques to Maximize the Quality of MS/MS Spectra for Metabolite Identification Studies, ASMS Conference 2014



### **SWATH™** Acquisition vs. IDA





- All the major product ions present in SWATH<sup>™</sup> as compared to 1 Da isolation IDA
- Get more confidence in compound ID with low level MS/MS
- Enables MS/MS quantitation on all discovered metabolites
- Retain data, not samples, for years to come with SWATH™ Acquisition



# **AB SCIEX for Drug Metabolism**

- 1. TripleTOF<sup>™</sup> Platform Capabilities
- 2. Acquisition Strategies
  - Real-Time Filtering
    - Multiple Mass Defect Filtering (MMDF)
    - Dynamic Background Subtraction
  - Quant/Qual Acquisition
    - Data Dependent Acquisition (IDA)
    - SWATH™
- **3.** Digital record of information (SWATH)
- **4.** Software (MetabolitePilot<sup>™</sup>, MultiQuant<sup>™</sup>)
- 5. Selectivity (SelexION<sup>™</sup>)



# MetabolitePilot<sup>™</sup> Software for Metabolite ID



- Intuitive workspace for processing accurate mass data
- **High-throughput batch** processing for multiple assay sets
- Formula prediction with a high level of chemical intelligence
- Cleavage Metabolites in addition to expected and unexpected metabolites.
- Integrated MS/MS fragment interpretation
- **Correlation** across multiple time points for metabolic stability and PK studies and interspecies comparison studies
- A single solution for comprehensive metabolite identification, structural interpretation and metabolite & parent correlation



# MultiQuant<sup>™</sup> Software for Quantitation



- Intuitive workspace for processing accurate mass data
- Multiple analytes can be compared in a single view
- Metric plots for quick review of data
- Automatic query for outliers
- **Peak de-convolution** for precise and accurate integration
- **Parameter free integration** toll (MQ4 and SignalFinder<sup>™</sup> algorithms)
- A single solution for quantifying small molecule compounds, biomarkers and biopharmaceuticals



# **Metabolite Identification**

### **Two Categories**

- Discovery Metabolite Identification: Finding potential candidates
  - In Vitro assays
  - Microsomes or S9 fraction
  - CYP Inhibition studies
- Development Metabolite Identification: Full characterization of candidates
  - In Vitro and In Vivo metabolism
  - Hepatocytes
  - Animal Studies



# **Challenges for Metabolite ID**

#### **Discovery Metabolite Identification**

- Lead Generation and Optimization: Identify potential candidates by screening compound library for metabolic stability and soft spots
- Achieving Success Requires: Increased sample throughput and efficiency of data processing

### Obstacles to success:

- Each compound requires optimization for MRM based analysis
- Individual methods need to be generated
- Huge time investment and many compounds fail
- Implementing separate qualitative and quantitative methods
- Fast chromatography is desired-reduced cycle time required



# **Challenges for Metabolite ID**

#### **Development Metabolite Identification**

- Drug Metabolism and Phamacokinetics: Characterize compound metabolism using *in vitro* and *in vivo* models
- Achieving Success Requires: Detecting, characterizing, and quantifying metabolites with accuracy and efficiency

### • Obstacles to success:

- Accurate structure assignment
- Ability to detect low level signals in complex matrices
- Qualitative and quantitative methods
- Untargeted detection highly desirable



# SCIEX Complete Solution for Metabolite ID

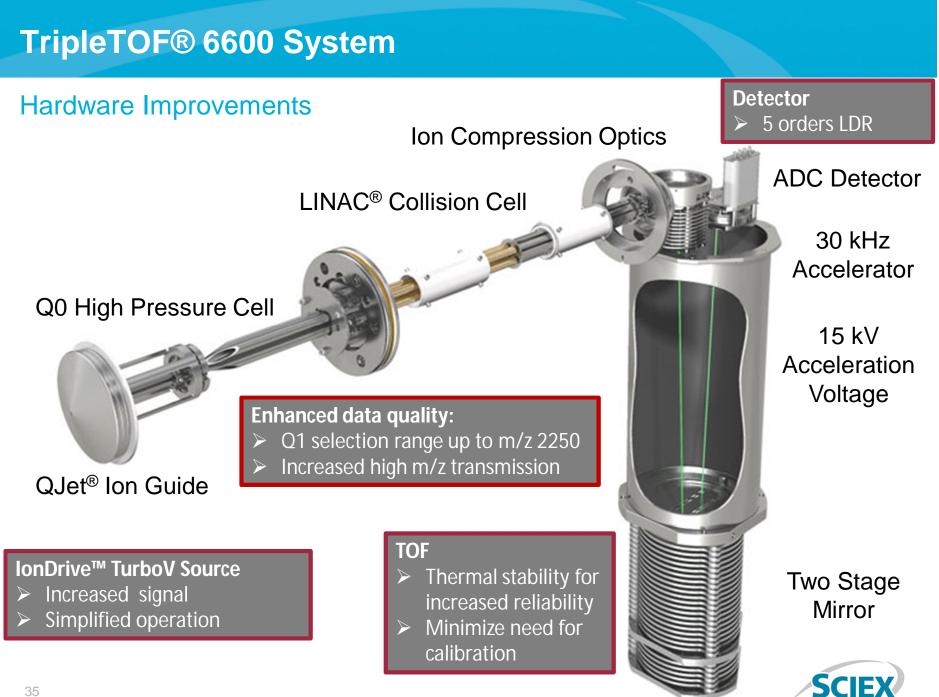
# Introducing... The SCIEX Accurate Mass Met ID Platform

Featuring TripleTOF® 6600 – Our most quantitative discovery system yet!

### • NEW TripleTOF<sup>®</sup> 6600 System

Hardware innovations

### • NEW SWATH<sup>™</sup> Acquisition 2.0


New acquisition and processing strategies

#### • NEW MetabolitePilot 2.0 Alpha

- Streamlined data analysis and interpretation





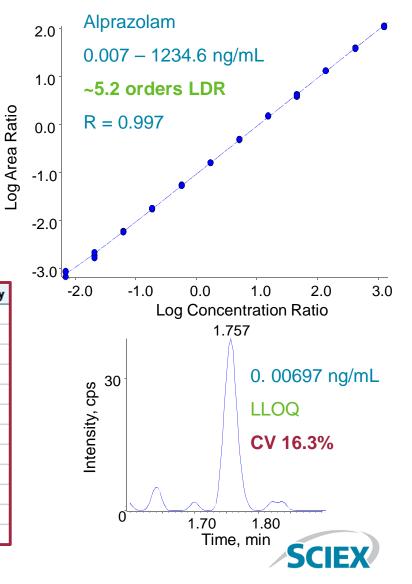


# TripleTOF® 6600 System

### What's New!

- Broader Dynamic Range
  - Enhanced detector technology for greater than 5 orders linear dynamic range
- Improved Coverage and Mass Selection
  - Extended Q1 mass range up to 2250 m/z
- Faster Acquisition Rates for comprehensive quant
  - Up to 100 MS/MS per cycle in IDA, up to 100 Hz
  - Variable windows and up to 200 SWATH windows per cycle
- Improved Mass Accuracy Stability
  - < 0.5 ppm, internal</p>
  - < 2 ppm RMS, external</p>
- High Resolution
  - > 35,000 in TOF MS
  - > 20,000 or > 30,000 in TOF MS/MS

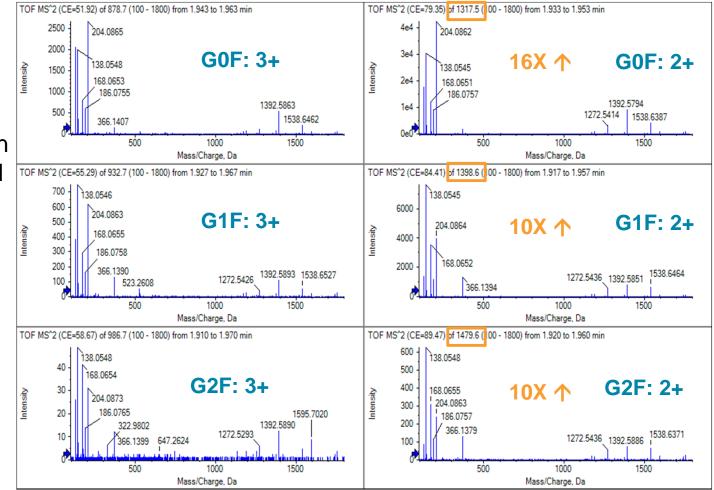





## **Detector Dynamic Range Extended**

## **MRMHR** Workflow

- 5.2 orders observed with Alprazolam using internal standard
- Detector saturation is no longer a limiting factor, source or column are likely to saturate before the detection system


| Component N_ | Actual Concentra | Num. V | Mean     | Standard Devi | Percent CV | Accuracy |
|--------------|------------------|--------|----------|---------------|------------|----------|
| Alprazolam 2 | 0.00697          | 3 of 3 | 7.197e-3 | 1.171e-3      | 16.27      | 103.26   |
| Alprazolam 2 | 0.02091          | 3 of 3 | 1.889e-2 | 2.600e-3      | 13.77      | 90.33    |
| Alprazolam 2 | 0.06272          | 3 of 3 | 6.190e-2 | 1.091e-3      | 1.76       | 98.70    |
| Alprazolam 2 | 0.18817          | 3 of 3 | 1.909e-1 | 6.110e-3      | 3.20       | 101.48   |
| Alprazolam 2 | 0.56450          | 3 of 3 | 5.818e-1 | 1.415e-2      | 2.43       | 103.07   |
| Alprazolam 2 | 1.69351          | 3 of 3 | 1.718e0  | 1.140e-2      | 0.66       | 101.47   |
| Alprazolam 2 | 5.08053          | 3 of 3 | 5.237e0  | 1.687e-1      | 3.22       | 103.08   |
| Alprazolam 2 | 15.24158         | 3 of 3 | 1.600e1  | 4.537e-1      | 2.84       | 104.97   |
| Alprazolam 2 | 45.72474         | 3 of 3 | 4.375e1  | 1.913e0       | 4.37       | 95.67    |
| Alprazolam 2 | 137.17421        | 3 of 3 | 1.406e2  | 1.065e0       | 0.76       | 102.47   |
| Alprazolam 2 | 411.52263        | 3 of 3 | 4.125e2  | 4.320e0       | 1.05       | 100.24   |
| Alprazolam 2 | 1234.56790       | 3 of 3 | 1.176e3  | 1.985e1       | 1.69       | 95.26    |



# Q1 Transmission up to 2250 m/z

## **Glycopeptides Example**

- Glycosylation an important PTM
- Glycopeptides can be quite large and sugar portion doesn't always take a lot of charge.
- 2+ ions of mAb glycopeptides are now accessible to MS/MS



2+ forms of these glycopeptides are 10-16x greater intensity than their 3+ charged counterparts.

SCIEX

## **Improved Source Design**

IonDrive<sup>™</sup> Turbo V Source

- Larger diameter (11 mm) heaters
- Optimized geometry
- More efficient heat transfer
- Covers a larger cross-section of the spray cone
- Wider "sweet spot" when optimizing probe position
- More robust against fluctuations in gas flow dynamics, and source to source differences





## **Advances in Selectivity**

## SelexION<sup>™</sup> Technology

- Differential Mobility Separation (DMS)
- Improved selectivity with MRM<sup>HR</sup> Workflow
- Gas phase fractionation coupled with
  - TOF MS mapping
  - IDA
  - SWATH<sup>™</sup> Acquisition



# **Addressing Metabolite ID Acquisition Challenges**

#### **Discovery and Development Met ID**

- Information Dependent Acquisition
  - Optimal set up requires prior knowledge of analyte (i.e., m/z, signal)
  - Crowded chromatograms (matrix) and low level analytes can result in missing product ion data
  - Quantitation only with TOF data

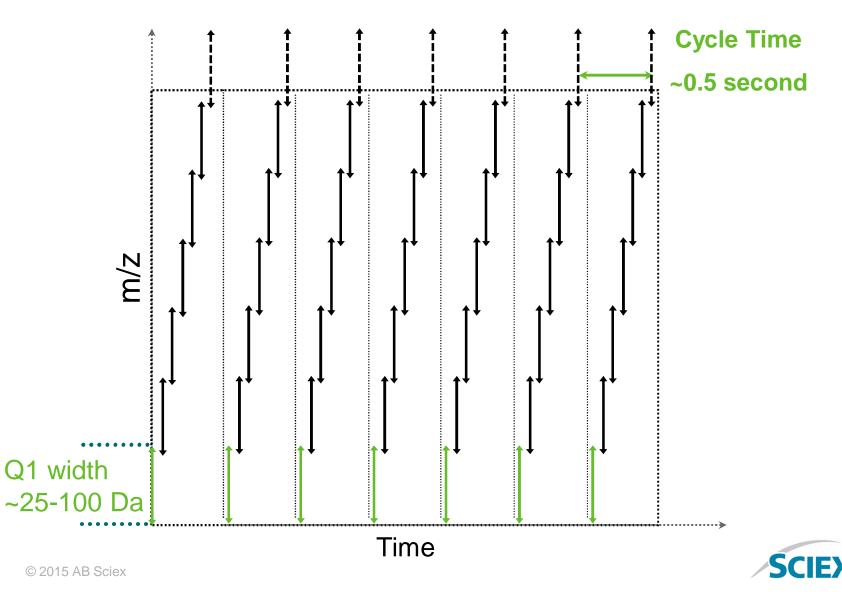
- Data Independent Acquisition-SWATH
  - Single method for multiple compounds
  - Product ion spectra
    - Generated for all analytes
    - Retains isotope pattern information
  - Quantitation with TOF or High Resolution Product Ion data



# **SWATH Acquisition for Met ID Analysis**

## Key benefits and features

## Benefits of SWATH Acquisition


- Generic method useful for Discovery and Development Phase
- Comprehensive qualitative and quantitative analysis
- Ultimate safety net for capturing both predicted and unpredicted metabolites / catabolites
- Intuitive data processing and broad coverage for metabolite ID
- Unique Features of SWATH Acquisition
  - Speed of TripleTOF allows SWATH on an LC time scale
  - Selective and sensitive MS/MS Quantification
  - Less complex MS/MS spectrum than traditional DIA techniques
  - SWATH Q1 window retains isotope pattern for each fragment
  - Good for <sup>14</sup>C/SIL metabolism studies
  - 100% MS/MS for low level metabolite/catabolite identification



# **Experimental Details: SWATH for Discovery Met ID**

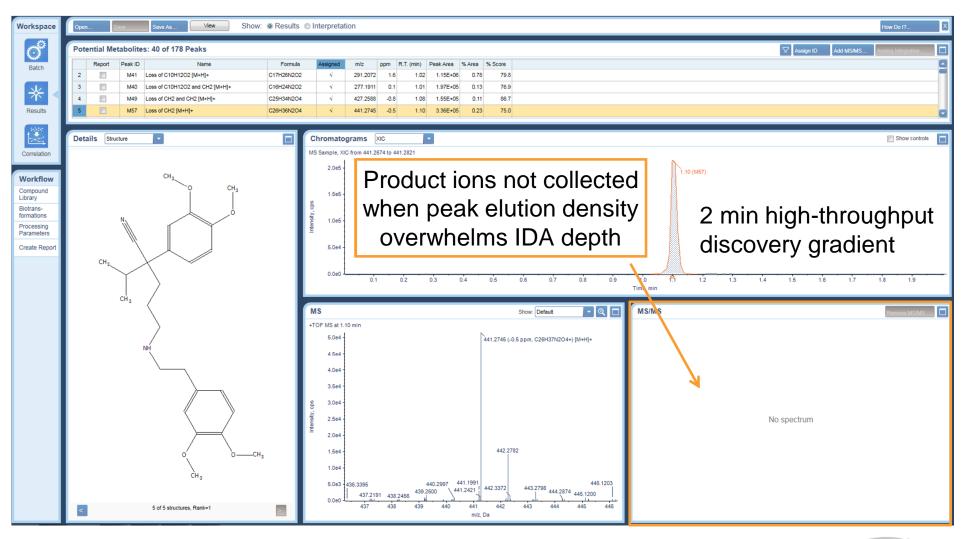
Data Independent Acquisition: SWATH

43



## **Experimental Details: SWATH**

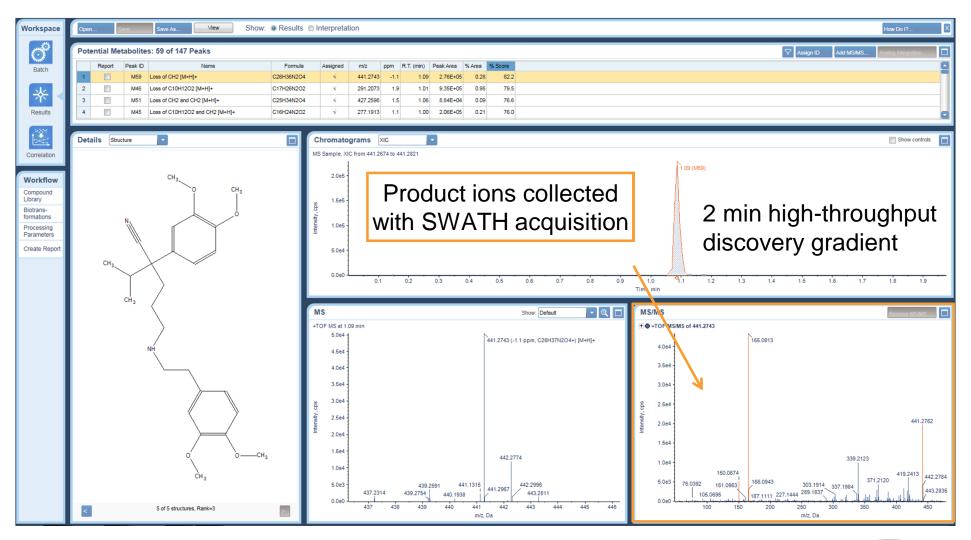
## **Data Independent Acquisition**


- Analyst TF 1.7 helps create a SWATH method.
- Product lons are collected without regard to decision criteria.

| Acquisition Method Experiment: 2 IDA Experiment Create IDA Exp Create SWAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Scan type:   Product Ion   Product Ion (+) 100.0 - 193.8   Product Ion (+) 100.0 - 193.8   Product Ion (+) 102.8 - 287.5   Product Ion (+) 102.8 - 287.5   Product Ion (+) 286.5 - 381.3   Product Ion (+) 286.5 - 381.3   Product Ion (+) 286.5 - 381.3   Product Ion (+) 380.3 - 475.0   Product Ion (+) 474.0 - 568.8   Product Ion (+) 567.8 - 662.5   Product Ion (+) 567.8 - 662.5   Product Ion (+) 755.3 - 850.0   Shimadzu LC System   Requilibrate   Y Injection     Period   Duration:   1.983   (mins)   Cycles:   238   Delay Time:   0   (secs) | 'ATH <sup>***</sup> Exp |



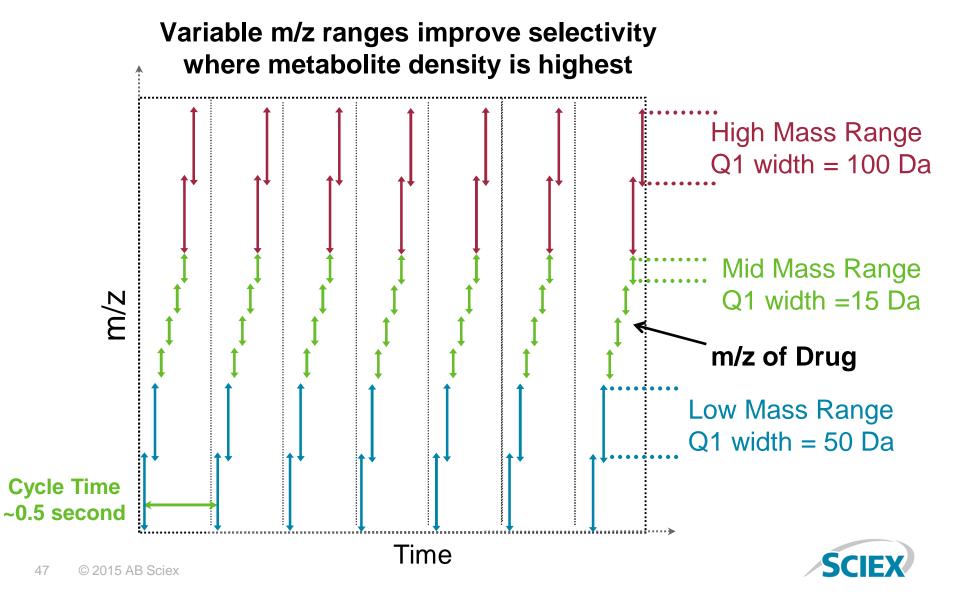
## **Experimental Details: IDA vs SWATH**


#### **IDA results N-Desmethyl verapamil**





## **Experimental Details: IDA vs SWATH**


#### SWATH results N-Desmethyl verapamil



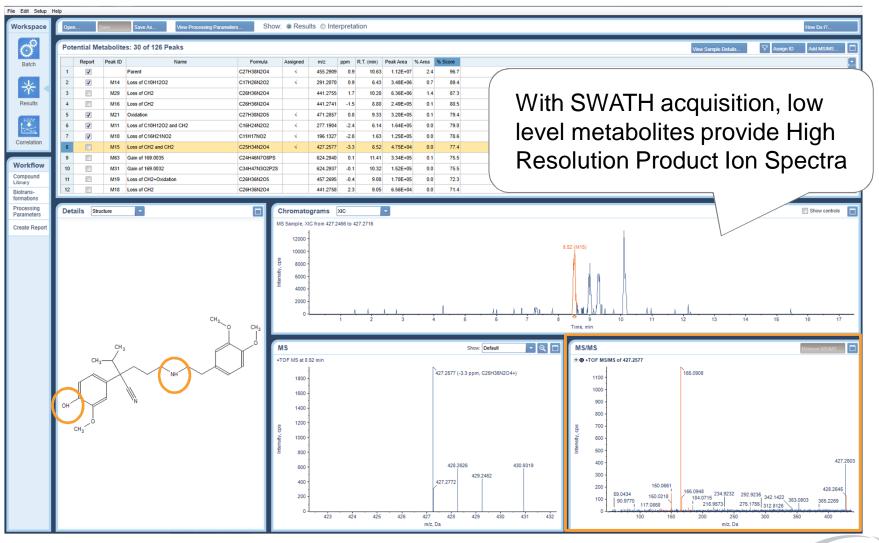


## **Experimental Details: SWATH for Development Met ID**

Data Independent Acquisition: SWATH with Variable Windows



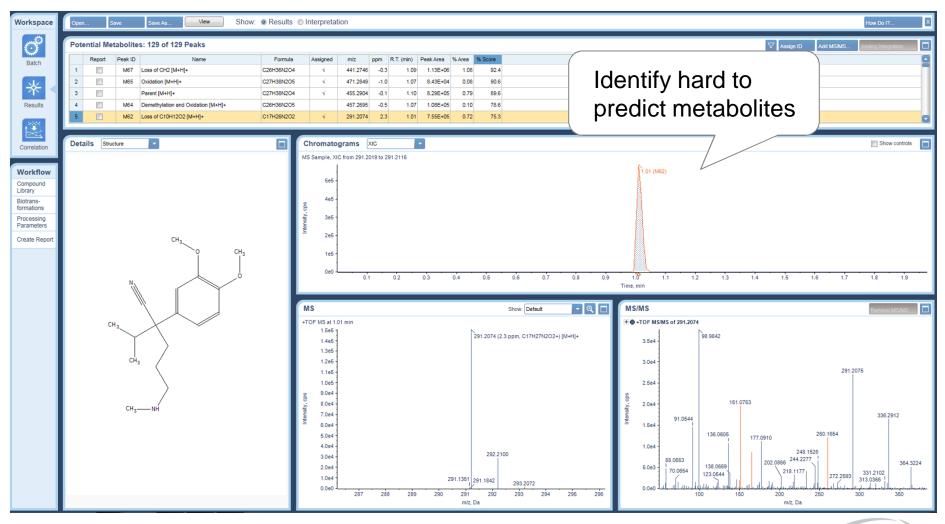
## **Data Processing**


#### MetabolitePilot 2.0 Alpha

- Process and interrogate accurate mass metabolism data
- Multiple Mass Defect filtering capabilities for cleaner, more relevant data
- Compound Library & Results Database to store & retrieve important project information
- Batch processing for multiple sample sets
- Correlation Workspace
  - Select Multiple Samples (i.e., time points or different species)
  - Correlate Results
- Interpretation View
  - Fragmentation interpretation
  - Structural elucidation of metabolites



## **Data Processing: Results**


#### MetabolitePilot 2.0 Alpha: Verapamil 10uM HLM incubation





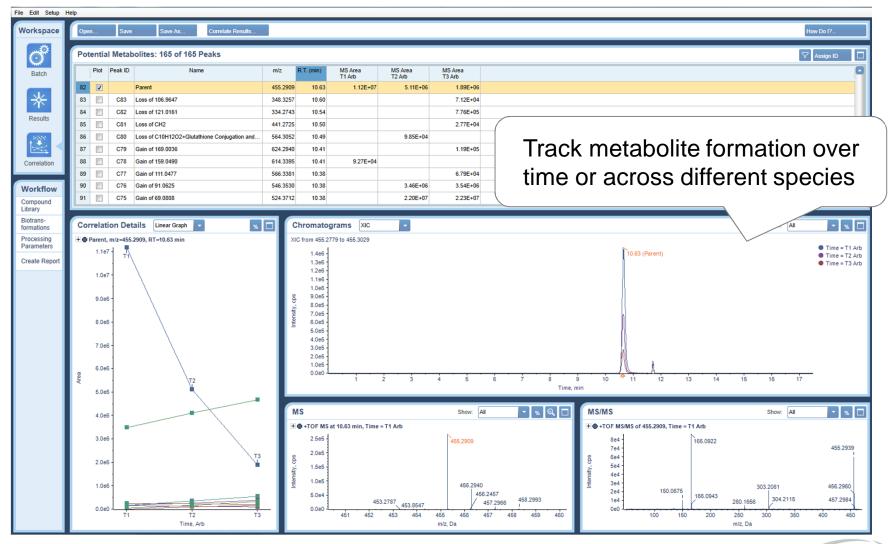
## **Data Processing: Results**


## MetabolitePilot 2.0 Alpha: Verapamil 1uM HLM incubation





## **Data Processing: Interpretation**


#### MetabolitePilot 2.0 Alpha: Verapamil 10uM HLM incubation



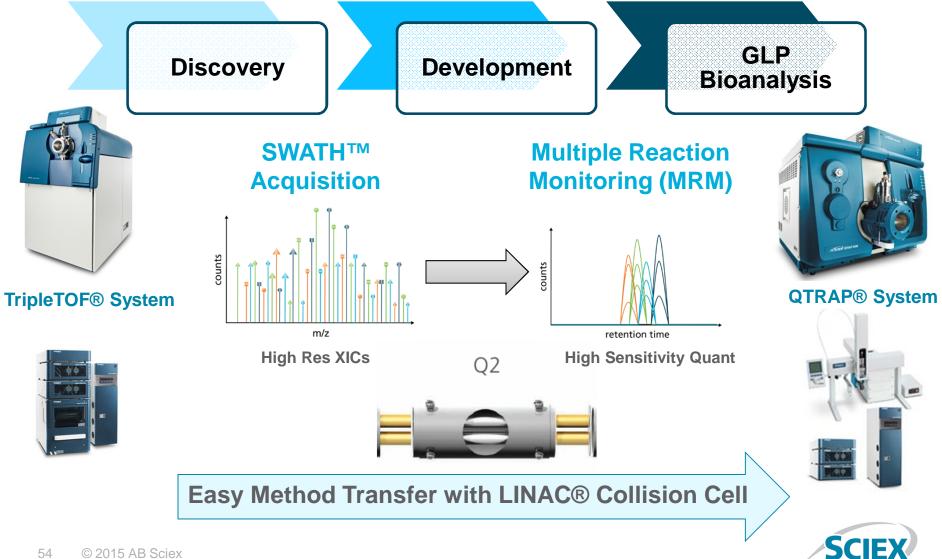


## **Data Processing: Correlation**

#### MetabolitePilot 2.0 Alpha: Verapamil 10uM HLM incubation








- The TripleTOF® 6600 System and SWATH<sup>™</sup> Acquisition
   2.0 for Discovery and Development Metabolite ID provides
  - A digital MS & MSMS record of a sample/time point/species study.
     Allowing for retrospective data mining of the data without performing re-incurred analysis
  - Increased sample throughput and efficiency of data processing
  - Advances for detecting, characterizing, and quantifying metabolites with accuracy and efficiency



# **SWATH™** Acquisition to MRM Workflow

#### Pathway for a Complete Solution





# Answers for Science. Knowledge for Life.<sup>™</sup>

